Marginal MAP Estimation for Inverse RL under Occlusion with Observer Noise (Supplementary material)

Pranath Sengadu Suresh

1THINC Lab, Department of Computer Science, University of Georgia, Athens, GA 30606, USA.

1 EXTENDED DERIVATION OF MMAP-BIRL REWARD GRADIENTS:

Following the notations provided in the main paper, the likelihood of the visible portions of the trajectories are written as the marginal of the complete trajectory X by summing out the corresponding hidden portion Z:

$$Pr(Y|R_\theta) = \prod_{Y \in Y} Pr(Y|R_\theta)$$

$$= \prod_{Y \in Y} \sum_{Z \in Z} Pr(Y,Z|R_\theta) = \prod_{Y \in Y} \sum_{Z \in Z} Pr(X|R_\theta).$$

Here, the parameters θ are the maximization variables and the occluded portion Z of a trajectory comprises the summation variables of the marginal MAP inference. Using the above likelihood function, the MMAP-BIRL problem is more specifically formulated as:

$$R_\theta^* = \arg \max_{\theta \in \Theta} \prod_{Y \in Y} \sum_{Z \in Z} Pr(Y,Z|R_\theta) Pr(R_\theta).$$

Let Z be the collection of the observations in the occluded time steps of X, and $Y = X/Z$. Then,

$$R_\theta^* = \arg \max_{\theta \in \Theta} \prod_{Y \in Y} \sum_{Z \in Z} Pr(o_1^t,o_2^t,o_3^t,\ldots,o_T^t|R_\theta)$$

$$\times Pr(R_\theta).$$

The learner’s observation o_t^t is a noisy perception of the expert’s state and action at time step t, and the observations are conditionally independent of each other given the expert’s state and action. Therefore, we introduce the state-action pairs in the likelihood function above.

$$Pr(o_1^t,o_2^t,o_3^t,\ldots,o_T^t|R_\theta) = \sum_{s_1^T,a_1^T,s_2^T,a_2^T,\ldots,a_T^T} Pr(o_1^t,o_2^t,o_3^t,\ldots,o_T^t|s_1^T,a_1^T,s_2^T,a_2^T,\ldots,a_T^T,R_\theta).$$

For convenience, let τ denote the underlying trajectory of state-action pairs, $\tau = (s^T,a^T)$. Then, we may reformulate the MMAP-BIRL problem as:

$$R_\theta^* = \arg \max_{R_\theta} \prod_{Y \in Y} \sum_{Z \in Z} \sum_{\tau \in (|S||A|)^T} Pr(o_1^t,o_2^t,o_3^t,\ldots,o_T^t,\tau|R_\theta) Pr(R_\theta).$$

Now the log-posterior can be represented as:

$$L_\theta = L_{\theta}^{lh} + L_{\theta}^{pr}.$$

The log forms of the prior and the likelihood function are represented as

$$L_{\theta}^{pr} = \log Pr(R_\theta)$$

$$L_{\theta}^{lh} = \sum_{Y \in Y} \log \sum_{Z \in Z} \sum_{\tau \in (|S||A|)^T} Pr(o_1^t,o_2^t,o_3^t,\ldots,o_T^t,\tau|R_\theta).$$

Consequently, the partial differential of (1) becomes:

$$\frac{\partial L_\theta}{\partial \theta} = \frac{\partial L_{\theta}^{lh}}{\partial \theta} + \frac{\partial L_{\theta}^{pr}}{\partial \theta}.$$

1.1 DERIVATIVE OF LOG-PRIOR

If we choose the prior $Pr(\theta; \mu_\theta, \sigma^2_\theta)$ to be Gaussian, then the distribution is given as:

$$Pr(\theta; \mu_\theta, \sigma^2_\theta) = \frac{1}{\sqrt{2\pi \sigma^2_\theta}} e^{-(\theta - \mu_\theta)^2/2\sigma^2_\theta}.$$

where the mean μ_θ and standard deviation σ^2_θ may differ between the feature weights. Then, log prior becomes:

$$L_{\theta}^{pr} = \log \left(\frac{1}{\sqrt{2\pi \sigma^2_\theta}} e^{-(\theta - \mu_\theta)^2/2\sigma^2_\theta} \right)$$

$$= \log \left(\frac{1}{\sqrt{2\pi \sigma^2_\theta}} \right) + \log \left(e^{-(\theta - \mu_\theta)^2/2\sigma^2_\theta} \right)$$

$$= -\log (\sqrt{2\pi \sigma^2_\theta}) + \log \left(\frac{-(\theta - \mu_\theta)^2}{2\sigma^2_\theta} \right).$$

Therefore, partial differential of L_{θ}^{pr} becomes:

$$\frac{\partial L_{\theta}^{pr}}{\partial \theta} = \frac{-(\theta - \mu_\theta)}{\sigma^2_\theta}.$$
1.2 DERIVATIVE OF LOG-LIKELIHOOD

As explained in the paper, the log-likelihood can be fully written as:

\[
L_{th}^h = \sum_{Y \in Y} \log \sum_{Z \in \mathcal{Z} \tau \in ([S]|A)^T} Pr(s^1) \pi(a^1|s^1; \theta) \times \prod_{t=1}^{T-1} O_i(s^t, a^t, o^t) T(s^t, a^t, s^{t+1}) \pi(a^{t+1}|s^{t+1}; \theta) \times O_i(s^T, a^T, o^T).
\]

Now, for convenience, let’s represent everything within log in (3) as:

\[
h_\theta = \sum_{Z \in \mathcal{Z} \tau \in ([S]|A)^T} Pr(s^1) \pi(a^1|s^1; \theta) \times \prod_{t=1}^{T-1} O_i(s^t, a^t, o^t) T(s^t, a^t, s^{t+1}) \pi(a^{t+1}|s^{t+1}; \theta) \times O_i(s^T, a^T, o^T).
\]

Log-likelihood now becomes:

\[
L_{th}^h = \sum_{Y \in Y} \log h_\theta = \frac{\partial L_{th}^h}{\partial \theta} = \sum_{Y \in Y} \frac{1}{h_\theta} \frac{\partial h_\theta}{\partial \theta}
\]

\[
\frac{\partial h_\theta}{\partial \theta} = \sum_{Z \in \mathcal{Z} \tau \in ([S]|A)^T} Pr(s^1) \pi(a^1|s^1; \theta) \times \prod_{t=1}^{T-1} O_i(s^t, a^t, o^t) T(s^t, a^t, s^{t+1}) \frac{\partial}{\partial \theta} \left(\prod_{t=1}^{T-1} \pi(a^{t+1}|s^{t+1}; \theta) \right) \times O_i(s^T, a^T, o^T).
\]

Now let’s say for convenience \(P_\theta^a\) holds \(\prod_{t=1}^{T-1} \pi(a^{t+1}|s^{t+1}; \theta)\) term from the above equation:

\[
P_\theta^a = \prod_{t=1}^{T-1} \pi(a^{t+1}|s^{t+1}; \theta)
\]

\[
= \pi(a^2|s^2; \theta) \times \pi(a^3|s^3; \theta) \times \pi(a^4|s^4; \theta) \times \pi(a^{T-1}|s^{T-1}; \theta)
\]

\[
\frac{\partial P_\theta^a}{\partial \theta} = \left(\frac{\partial \pi(a^3|s^3; \theta)}{\partial \theta} \times \pi(a^4|s^4; \theta) \times \pi(a^{T-1}|s^{T-1}; \theta) \right) + \left(\pi(a^2|s^2; \theta) \times \frac{\partial \pi(a^4|s^4; \theta)}{\partial \theta} \times \pi(a^{T-1}|s^{T-1}; \theta) \right) + \left(\pi(a^2|s^2; \theta) \times \pi(a^3|s^3; \theta) \times \frac{\partial \pi(a^{T-1}|s^{T-1}; \theta)}{\partial \theta} \right) + \ldots
\]

\[
= \left(\sum_{t=1}^{T-1} \frac{\partial \pi(a^{t+1}|s^{t+1}; \theta)}{\partial \theta} \right) \prod_{t \neq t}^{T-1} \pi(a^t|s^t; \theta)
\]

Partial derivative of the policy \(\pi(a^{t+1}|s^{t+1}; \theta)\) is given as,

\[
\frac{\partial \pi(a^{t+1}|s^{t+1}; \theta)}{\partial \theta} = \pi(a^{t+1}|s^{t+1}; \theta) \left(\frac{\partial Q^*(s^{t+1}, a^{t+1}; \theta)}{\partial \theta} - \sum_{a' \in A} \pi(a'|s^{t+1}; \theta) \frac{\partial Q^*(s^{t+1}, a'; \theta)}{\partial \theta} \right)
\]