
Appendix A. (Anytime Learning of Sum-Product and Sum-Product-Max Networks)

A.1 Proof of Proposition 1: SPMN Validity

The expansion of an SPMN S can be given using the expression max
σ

∑
k

sk,σΠk(...)U(k, σ), where

Πk(...) is the monomial over the indicator variables and sk,σ ≥ 0 is its coefficient. For evaluat-
ing SPMN to get the expansion, the indicator variables that are consistent with the evidence are
set to 1 and the remaining to 0. A bottom-up pass is performed by applying the operators at each
node on the values of its children. Thus, an SPMN is valid if it is able to correctly compute the
MEU for any given evidence. For this purpose, the states x and the monomials given by expan-
sion must be in one-to-one correspondence. Thus, each monomial is non-zero in exactly one state
(condition 1), and each state has exactly one non-zero monomial in it (condition 2). So, from
condition 2, S(x) would be equal to max

σ
sx,σU(x, σ) corresponding to the monomial that is non-

zero. Therefore,
∑
x∼e

S(x) =
∑
x∼e

max
σ

sx,σU(x, σ) = max
σ

∑
k

sk,σU(k, σ)nk(e), where nk(e) is

the number of states x consistent with e for which Πk(x) = 1. But nk(e) = 1 from condition
1 if the state x for which Πk(x) = 1 is consistent with the evidence and nk(e) = 0 in all other
cases. Thus, we get

∑
x∼e

S(x) = max
σ

∑
k:Πk(e)=1

sk,σU(k, σ) = S(e) which is the condition for

validity. The coefficients sx,σ represent the probability distribution Φ(x, σ). As stated previously,∑
x∼e

S(x) =
∑
x∼e

max
σ

sx,σU(x, σ) = max
σ

∑
x∼e Φ(x, σ)U(x, σ) = max

σ
EU(e, σ). Thus, we also

have S(e) = max
σ

EU(e, σ) that shows that the expansion of the network maximizes the expected
utility.

A.2 Proof of Theorem 2: Validity of ANYTIMESPN Algorithm

The ANYTIMESPN algorithm makes use of the LEARNSPN* algorithm that utilizes the two pa-
rameters k and n. We need to show that for any combination of the parameters k and n in the
given ranges, the SPN remains complete and decomposable, thus ensuring validity. So, we prove
by induction from leaves to the root of the network that the SPNs at each iteration are valid.

Base Case: Validity is trivially true in the case of the leaf nodes since they only represent the
univariate distributions and are not affected by the parameters of the algorithm.

Induction Hypothesis: Let n0 be an internal node having children n1, ..., nl. Following the
notations in Poon and Domingos (Poon and Domingos, 2011), the scope of n0 is given as V 0,
a state of V 0 as x0, the expansion of the sub-network rooted at n0 as S0, and the unnormalized
probability of x0 under S0 as Φ0(x0). The same notations apply for the other nodes as well. Thus,
by induction hypothesis, the expansion of SPN rooted at nl is Sl =

∑
xl

Φl(xl)Π(xl).

Induction Step: If the node n0 is the product node in the case of naı̈ve-factorization, then
its children n1, ..., nl consists of leaf nodes representing univariate distributions of each distinct
variable in V . Thus, V i ∩ V j = φ, where V i and V j are the scopes of distinct children of n0.
This ensures decomposability of the node. Also, S0 = (

∑
x1

Φ1(x1)Π(x1))× ...× (
∑
xl

Φl(xl)Π(xl))

which is its network polynomial.
Consider the sub-SPN rooted at the sum node n0. This node could have 2 to k number of

children. All these clusters would definitely share the same scope since they are discovered within
the same dataset which would ensure completeness irrespective of the parameter k. Thus, if it has

13

k children, then the expansion S0 = w01
∑
x1

Φ1(x1)Π(x1) + ... + w0k
∑
xk

Φk(xk)Π(xk). If the

scopes of all the children are same, V 0 = V 1 = ... = V k, then a one-to-one correspondence is
established between the monomials of the expansions S0 and the states of V 0. Therefore, S0 =∑
x0

(w01Φ1(x0) + ... + w0kΦ
k(x0))Π(x0). This represents the network polynomial and maintains

validity.

Now consider the case of n0 being a product node. Let the independence testing performed
on the subset of first n variables in V 0 find l independent subsets having scopes V 1, ..., V l where
l ≤ n. Since the subsets are independent of each other, V i ∩V j = φ, for all distinct subset pairs V i

and V j . The distribution of remaining |V |−n variables ensures that the subsets are still disjoint and
the product node n0 having children of scopes V 1, ..., V l is decomposable. Thus, the expansion of
sub-SPN rooted at n0, S0 = (

∑
x1

Φ1(x1)Π(x1))× ...× (
∑
xl

Φl(xl)Π(xl)), is its network polynomial

since V i ∩ V j = φ for all distinct subset pairs V i and V j .

Thus, the introduction of the parameters k and n to the structure learning algorithm for SPNs
do not interfere with the completeness and decomposability of the internal nodes irrespective of the
parameter values. Since the network remains complete and decomposable at each iteration of the
ANYTIMESPN algorithm, the algorithm always generates a valid network structure.

A.3 Proof of Theorem 3: Validity of ANYTIMESPMN Algorithm

The ANYTIMESPMN algorithm makes use of the LEARNSPMN* algorithm that requires the pa-
rameters k, n, d and dmax to learn SPMNs. We need to show that for any combination of the
parameters in the given ranges, the SPMN structures hold the properties that ensure validity. So, we
prove that the SPMNs at each iteration are valid by using induction from leaves to the root of the
network.

Base Case: Validity is trivial in the case of the leaf nodes since they only represent the univariate
distributions or the utility values and are not affect by the parameters of the algorithm. For the base
case of validity, consider the case of a SPMN having partial order P≺ = [[D], [U]]. This case only
has one decision node connected to d utility nodes that are leaves. The evaluation of this SPMN
gives S = maxvgU(vg) which maximizes the utility for the decision groups.

Induction Hypothesis: Let n0 be an internal node having children n1, ..., np. Let the scope of
n0 be V 0, σ0 be a policy using decisions in the scope, a state of V 0 be x0, let the expansion of the
sub-network rooted at n0 be S0, and the unnormalized probability of x0 under S0 be Φ0(x0, σ0).
The same notations apply for the other nodes as well. Thus, by induction hypothesis, the scope of
sub-SPN rooted at np is Sp = max

σp

∑
xp

Φp(xp, σp)U(xp, σp).

Induction Step: Thus, if n0 is a max node for decision variable D0 having d children corre-
sponding to the decision value groups in vg, the expansion S0 = maxvg{S1, ..., Sd}. By induction
hypothesis, S1, ..., Sd return the MEUs yielded by sub-SPMNs rooted at nodes n1, ..., nd that are
learned from data having the same scope VR. Thus, maximization over these values returns the
MEU at the max node and the node n0 is max-complete. The decision variable D0 is processed at
the node n0 and D0 /∈ VR. Since the children n1, ..., nd have the scope VR, the decision variable
D0 appears at the most once in the paths from the root to the leaves. Hence, max-uniqueness is also
ensured.

14

If the node n0 is a sum node, it could have 2 to k number of children. The dataset D is clustered
into k clusters by considering the variables in the current information set P≺[i], but the scope of the
clusters remains identical. Thus, sum-completeness is guaranteed irrespective of the value of k. For
the sub-SPMN rooted at sum node n0 with k children, the expansion is S0 = w01S

1 + ...+w0kS
k.

Therefore,
S0 = w01 ×max

σ1

∑
x1

Φ1(x1, σ1)U(x1, σ1) + ...+ w0k ×max
σk

∑
xk

Φk(xk, σk)U(xk, σk)

If the scopes of all the children are same, V 0 = V 1 = ... = V k, then a one-to-one correspondence
is established between the monomials of the expansions S0 and the states of V 0. Therefore,

S0 = max
σ0

∑
x0

[w01Φ1(x0, σ0) + ...+ w0kΦ
k(x0, σ0)]U(x0, σ0))

This expression too maximizes the expected utility at the sum node n0 and so the sub-SPMN rooted
at this node remains valid.

Now consider the case of n0 being a product node. Let the variable splitting performed on the
subset of first n variables in V 0 find p independent subsets having scopes V 1, ..., V p where p ≤ n.
Since the subsets are independent of each other, V i∩V j = φ for all distinct subset pairs V i and V j .
The subsets having variables in VR are merged together and the remaining variables are distributed
as mentioned. Due to this, only one branch of the product node has decision or utility variables in
its scope and the product node n0 having children of scopes V 1, ..., V q is decomposable. Hence,
the expansion of V 0 is,

S0 = S1 × ...× Sq−1 × (max
σq

∑
xq

Φq(xq, σq)U(xq, σq))

=
∑
x1

Φ1(x1)× ...×
∑
xq−1

Φq−1(xq−1)× (max
σq

∑
xq

Φq(xq, σq)U(xq, σq))

= max
σ0

∑
x0

Φ0(x0, σ0)U(x0, σ0)

This is because V i ∩ V j = φ for all distinct subset pairs V i & V j and V 0 = V 1 ∪ ... ∪ V q. Hence,
the policy σ0 = σq and Φ0(x0, σ0) = Φ1(x1)...Φq−1(xq−1)Φq(xq, σq). So, the sub-SPN rooted at
the product node n0 is valid.

If the depth of the branch from the mentioned point exceeds dmax, then the variables V are
naı̈ve-factorized. We had already proved validity for naı̈ve factorization in Section A.2.

Thus, the parameters k, n, d and dmax for the flexible structure learning algorithm LEARN-
SPMN* for SPMNs do not interfere with properties required for validity irrespective of the pa-
rameter values. Since the network remains sum-complete, decomposable, max-complete and max-
unique at each iteration of the ANYTIMESPMN algorithm, the algorithm always generates a valid
network structure.

A.4 Modifications to the SPMN Evaluation Testbed

Since most of the RDDLSim domains model a continuous interaction with the environment rather
than having a finite goal state, a few modifications have been made to these domains for conducting
our experiments. In the case of the Elevators domain with three floors, a person may randomly show
up at the middle floor with a given probability and may wish to go to the top or the bottom floor. In
the modified domain, the start state has the elevator at the first floor and a person on the second floor
waiting to go up. Here, the goal is to take that person to the third floor which has a reward of 5.0.

15

Figure 5: Performance profiles of ANYTIMESPN on the remaining 3 datasets. Left column shows the log
likelihoods, middle column the number of nodes in the SPNs, and the right column presents the run times in
seconds. Results for the remaining data sets are given in the supplementary file. All experiments were run on
a Red Hat Linux 8 system with Intel Xeon 12 cores 1.63 GHz each and 16 GB of RAM.

The Navigation domain, originally having a 3× 3 grid, is converted to a domain with 3× 2 grid by
removing the middle column. The initial state of the CrossingTraffic domain, having a 3 × 3 grid,
is modified to have the robot starting from the cell that is diagonally opposite to the goal cell. The
GameOfLife and the SkillTeaching domains are kept unchanged.

A.5 Performance of ANYTIMESPN on the Remaining Datasets

Figure 5 presents additional performance profiles generated by the ANYTIMESPN algorithm for the
MSNBC, KDDCup 2K, Netflix datasets.

A.6 Performance of ANYTIMESPMN on the Remaining RDDLSim Datasets

Figure 6 presents the additional results generated by the ANYTIMESPMN algorithm for the Cross-
ing Traffic and the Skill Teaching datasets.

16

Figure 6: Performance profiles of the ANYTIMESPMN algorithm on the remaining two decision-making
data sets. We show, in order from left to right columns, the average rewards (with standard deviations), log
likelihoods, number of nodes in the learned SPMNs, and the learning run time in seconds.

17

