
Reinforcement Learning in Many-Agent Settings Under Partial Observability

Keyang He1 Prashant Doshi1 Bikramjit Banerjee2

1 THINC Lab, Department of Computer Science, University of Georgia, Athens, GA, USA
2 School of Computing Sciences and Engineering, University of Southern Mississippi, Hattiesburg, MS, USA

Abstract

Recent renewed interest in multi-agent reinforce-
ment learning (MARL) has generated an impres-
sive array of techniques that leverage deep RL, pri-
marily actor-critic architectures, and can be applied
to a limited range of settings in terms of observabil-
ity and communication. However, a continuing lim-
itation of much of this work is the curse of dimen-
sionality when it comes to representations based
on joint actions, which grow exponentially with
the number of agents. In this paper, we squarely
focus on this challenge of scalability. We apply the
key insight of action anonymity to a recently pre-
sented actor-critic based MARL algorithm, inter-
active A2C. We introduce a Dirichlet-multinomial
model for maintaining beliefs over the agent pop-
ulation when agents’ actions are not perfectly ob-
servable. We show that the posterior is a mixture of
Dirichlet distributions that we approximate as a sin-
gle component for tractability. We also show that
the prediction accuracy of this method increases
with more agents. Finally we show empirically that
our method can learn optimal behaviors in two re-
cently introduced pragmatic domains with large
agent population, and demonstrates robustness in
partially observable environments.

1 INTRODUCTION

Continued interest in multi-agent reinforcement learning
(MARL) has yielded a variety of algorithms over the years,
from Minmax-Q [Littman, 1994] and Nash-Q [Hu and Well-
man, 2003] during its initial study to the more recent ones
such as MADDPG [Lowe et al., 2017], COMA [Foerster
et al., 2018], QMIX [Rashid et al., 2018] and IA2C [He
et al., 2021]. While the early methods mostly generalized
Q-learning [Watkins, 1992] to multiagent settings, the later

methods utilize the actor-critic schema with centralized or
decentralized actor and critic components. The neural net-
work representations of the actor and critic components
allow these methods, which by default target settings with
perfectly observed states, to expand to partial observabil-
ity by maintaining a moving window of past observations.
While these methods have demonstrated good performance
on the standard MARL problem domains, the RL does not
practically scale beyond a handful of interacting agents.

Multiagent planning frameworks such as DEC- and I-
POMDPs [Bernstein et al., 2002, Gmytrasiewicz and Doshi,
2005] faced a similar hurdle of scaling in a meaningful way
to many agents. A key insight – that many domains exhibit
the action anonymity structure [Jovanovic and Rosenthal,
1988] – helped mitigate this curse of dimensionality (due
to many agents) afflicting planning. More specifically, it
is the number of agents that perform the various actions –
this count vector is called an action configuration – which
matters to the reasoning rather than the respective identities
of the agents performing the actions. In other words, joint
action permutations are equivalent. Modeling this invariance
enables the planning complexity to drop from being expo-
nential in the number of agents to polynomial thereby facili-
tating multiagent planning for thousands of agents [Varakan-
tham et al., 2014, Sonu et al., 2017].

Another challenge is to infer actions of other agents in a
partially observable setting. Recent methods either assume
perfect access to other agents’ policies [Yang et al., 2018, Fo-
erster et al., 2018], or infer other agents’ policies using their
state-action trajectories [Lowe et al., 2017] by maximum
likelihood estimation (MLE). While this is appropriate in
fully observable environments, in environments where other
agents’ behaviors can only be partially observed, MLE fails
to accurately predict their actions. IA2C [He et al., 2021]
manages this uncertainty by maintaining beliefs over can-
didate models of other agents and updating these beliefs
using the noisy observations. However, beliefs must be up-
dated over the models of each other agent, which in general
scales exponentially with the number of agents and becomes

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<kh45436@uga.edu>?Subject=Reinforcement Learning in Many-Agent Settings Under Partial Observability UAI 2022 paper
mailto:<pdoshi@uga.edu>?Subject=Reinforcement Learning in Many-Agent Settings Under Partial Observability UAI 2022 paper
mailto:<bikramjit.banerjee@usm.edu>?Subject=Reinforcement Learning in Many-Agent Settings Under Partial Observability UAI 2022 paper

intractable for a large population of agents.

In this paper, we aim to bring the idea of action anonymity to
MARL and scale the learning to many-agent settings under
partial observability.

1. Our first contribution is to introduce a MARL method
for cooperative-competitive settings that integrates ac-
tion anonymity with the actor-critic learning paradigm.
The method tracks the probability distribution over the
possible action configurations of other agents.

2. Our second contribution is to replace this distribution
over a polynomially-growing space with a Dirichlet-
multinomial model over the fixed set of others’ actions.
We show that the prediction accuracy of this model im-
proves with more agents. However, the noisy observation
leads to a posterior that is a mixture of Dirichlets, which
we subsequently replace by a single Dirichlet function.
This method efficiently updates the Dirichlet using the
agent’s noisy observations, and achieves an accuracy that
is comparable to the traditional belief update procedure.
Additionally, it can be implemented by neural network
layers and conveniently integrated into most actor-critic
based MARL methods to model large agent populations
in partially observable environments.

Our experiments demonstrate scalability of the method on
two large domains with up to one hundred agents. More-
over, in partially observable environments where states and
other agents’ actions are not perfectly observed but with
noise, this method maintains distributions that accurately
predict actions of the agent population, which eventually
leads to performance that improves on the previous MARL
techniques in both domains.

2 BACKGROUND

We briefly describe a recent partially observable cooperative-
competitive multi-agent domain in the next subsection, and
follow it up with a review of the recently introduced inter-
active A2C (IA2C) method for learning in such settings.

2.1 ORGANIZATION DOMAIN

The Organization domain (Org) [He et al., 2021] is a par-
tially observable multi-agent domain, modeling a typical
business organization that features a mix of individual com-
petition with cooperation to improve the financial health of
the organization. There are 5 (hidden) states corresponding
to various levels of financial health, which map to 3 obser-
vations that an agent can receive, as shown in Fig. 1(left).
An agent 0 has 3 action choices: self, group, and balance,
the latter benefiting both the organization and the individual.
Agent 0’s reward is comprised of an individual (competitive)
component, R0, which depends on the agent’s action (a0),

and a group (cooperative) component, RG, which depends
on the joint action (a). Let,

Rt0 ← R0(st, at0), RtG ← RG(st,at) (1)

A vital feature of this domain is an additional history-
dependent reward component, R−1, that models a bonus
payoff based on the organization’s previous year perfor-
mance, specifically a fraction φ of the previous reward,

Rt−1 = φ(
∑

i
Rt−1
i +Rt−1

G). (2)

Joint actions are determined by the number of agents pick-
ing self compared to that picking group, and this affects
the state transitions as shown in Fig. 1 (right). On the one
hand, self action yields a higher individual reward to an
agent than balance and group actions. But, it also dam-
ages the financial health of the organization if too many
agents act in a self-interested manner. Moreover, group
action improves the financial health at the expense of
individual rewards. Thus, with the objective of optimiz-
ing Etrajectories

[∑
t γ

t(RtG +Rti +Rt−1)
]
, i needs to bal-

ance greed with group welfare to optimize long-term payoff.

2.2 I-POMDP MODEL OF ORG

Multi-agent domains that involve frequent interactions
among agents are typically modeled using the well-known
interactive partially observable Markov decision process
(I-POMDP) [Gmytrasiewicz and Doshi, 2005, Doshi, 2012],
a framework that generalizes POMDPs [Kaelbling et al.,
1998] to sequential decision-making in multi-agent environ-
ments. An I-POMDP for agent 0 withN other agents in Org
is defined as,

I-POMDP0 = 〈IS0, A, T0, O0, Z0,Ω0,W0, R0〉.

• IS0 denotes the interactive state space, IS0 = 〈Sf , Sr〉×∏N
j=1Mj . This includes the physical (financial) state Sf ,

and the previous-step reward as an additional state feature
Sr, as well as models of the other agent Mj , which may be
intentional (ascribing beliefs, capabilities and preferences)
or subintentional [Dennett, 1971]. Examples of the latter are
probability distributions and finite state machines. In this
paper, we ascribe subintentional models to the other agents,
mj = 〈πj , hj〉, mj ∈Mj , where πj is j’s policy and hj is
its action-observation history.
• A = A0 ×

∏N
j=1Aj is the set of joint actions of all

agents. Let a−0 denote the joint actions of N other agents,
a−0 ∈

∏N
j=1Aj .

• T0 represents the transition function,

T0(〈sf , sr〉, a0,a−0, 〈s′f , s′r〉)

=

T (sf , a0,a−0, s

′
f), if s′r = R(sf , a0,a−0) + φ · sr

0 otherwise

Very Low Low Medium

State (Financial Health Level)

High Very High

Meager Several

Observation (Orders Received)

Many

Very Low Low Medium High Very High

#group > #self #group = #self #group < #self

Figure 1: States, noisy observations, and transition dynamics of the Org domain.

The transition function is defined over the physical states
and excludes the other agent’s models as is standard for I-
POMDPs. The function T (sf , a0,a−0, s

′
f) represents Org’s

Markovian transition dynamics.
• O = Of ×Or is the set of public observations, where Of
informs about the financial state and Or = Sr.
• Z0 is the observation function,

Zi(a0,a−0, 〈sf , sr〉, 〈s′f , s′r〉, 〈o′f , o′r〉)

=

Z(a0,a−0, sf , s

′
f , o
′
f), if (s′r = R(sf , a0,a−0)

+ φ · sr) ∧ (o′r = s′r)
0 otherwise

The observation function is defined over the physical state
space only as a consequence of the model non-observability
assumption in I-POMDPs. Here, Z(a0,a−0, sf , s

′
f , o
′
f)

models an agent’s public observation function in Org.
• Ω0 is the set of agent 0’s private observations.
•W0 : A× Ω0 → [0, 1] is the private observation function.
• R0 defines the reward function for agent 0,
R0(〈sf , sr〉, a0,a−0;φ) = R(sf , a0,a−0) + φ · sr.
For a more detailed description of the Org domain and its
I-POMDP model, see He et al. [2021].

The subject agent’s belief is a distribution over the inter-
active state space, b0 ∈ ∆(Sf ×

∏N
j=1Mj). If the other

agents’ behaviors are known to be not correlated, this may
be factorized as

b0(sf ,m1, . . . ,mN) = b0(sf) b0(m1|sf)×. . .×b0(mN |sf).

2.3 INTERACTIVE A2C FOR MIXED SETTINGS

Interactive advantage actor-critic (IA2C) [He et al., 2021] is
a decentralized actor-critic method designed for egocentric
RL in partially observable Markovian settings shared with
other agents. In IA2C, each agent has its own critic and actor
neural network, the former mapping individual observations
to joint action values in terms of the agent’s own reward
function, Q0(o, a0,a−0) and the latter mapping individual
observations to individual action probabilities, π0,θ(a0|o),
θ is its set of parameters. Here, o = 〈of , or〉 is the public
observation. IA2C estimates advantages as

A0(o, a0, â−0) = avg[r+γQ0(o, a′0, â
′
−0)−Q0(o, a0, â−0)]

while the actor’s gradient is estimated as

avg[∇θ log π0,θ(a0|o) A0(o, a0, â−0)]

where r, o and a′0 are samples, â−0 and â′−0 are predicted
actions, and the avg is taken over sampled trajectories. In
contrast with previous multi-agent deep RL algorithms,
IA2C does not require access to other agents’ actions and/or
gradients. Rather, agents maintain belief distributions over
other agents’ possible models. Let a−0 = a1, . . . , aN .
Given the agent’s prior belief b0, action a0, as well as its
public and private observations o′0, ω′0, the agent updates its
belief over agent j’s model for m′j = 〈π′j , h′j〉 as

b′0(m′j |b0, a0, o
′, ω′0) ∝

∑
a−0

(N∏
k=1,k 6=j

∑
mk∈Mk

b0(mk)

Pr(ak|mk)
∑

mj∈Mj

b0(mj) Pr(aj |mj) δK(π′j , πj)

δK(APPEND(hj , 〈aj , o′〉), h′j)
)
W0(a0,a−0, ω

′
0) (3)

where public and private observations are noisy observa-
tions of states and other agents’ actions. mj denotes agent
j’s model, πj is j’s policy and hj is its action-observation
history. W0 is the private observation function that maps
joint actions to private observations. δK is the Kronecker
delta function and APPEND returns a string with the second
argument appended to its first. The belief update is per-
formed by a belief filter integrated into the critic network.

3 MANY-AGENT RL UNDER PARTIAL
OBSERVABILITY

The primary challenge in scaling multi-agent RL to many
agents is the exponential growth of the joint action space.
However, if the population is homogeneous 1 in that all the
agents have the same action space (A0 = A1 = . . . =
AN) and the domain exhibits the action anonymity property,
which means that both the dynamics and the rewards depend

1We define homogeneity broadly to compute configurations
or mean actions from joint actions. Although agents may have
different models, configuration or mean action can be obtained as
long as all agents have the same action space.

on the count distribution of actions in the population, while
not needing the agents’ identities, then we may scale.

3.1 IA2C USING ACTION CONFIGURATIONS

Under the conditions of population homogeneity and action
anonymity, we present an alternate way to model large agent
populations, which has been effective in scaling decision-
theoretic planning.

3.1.1 Action Configurations

We begin by defining the concept of a configuration and
characterize its properties.

Definition 1 (Configuration). Define a configuration de-
noted by C as a vector of counts of the distinct ac-
tions performed by the N agents at a time step, Ca =
〈#a1,#a2, . . . ,#a|A|〉, where #a1 denotes the count of
an action a1 in the joint action a and #a1 ≤ N . Denote by
C the finite set of all configurations.

Definition 2 (Projection). Define a projection function δ
as a mapping δ : A→ C, which maps a joint action to its
corresponding configuration.

For example, δ projects the joint action a = 〈 self, self,
group, group 〉 in the Org domain to the configuration vector,
Ca = 〈2, 2, 0〉, where the vector components give the counts
of actions self, balance, and group, respectively. This is
analogous to the mean action ā = 〈 12 , 1

2 , 0〉 [Yang et al.,
2018], obtained by dividing the action configuration by the
number of agents.

Observe that δ is a many-one mapping as multiple distinct
joint actions, which are permutations of each other, yield the
same configuration vector. In other words, for any s, a0, s′,
a−0, and a permutation of a−0 denoted as ȧ−0, we have:

T0(s, a0,a−0, s
′) = T0(s, a0, ȧ−0, s

′) = T0(s, a0, Ca−0 , s′),

Z0(a0,a−0, s, s
′, o′) = Z0(a0, ȧ−0, s, s

′, o′) = Z0(a0, Ca−0 , s, s′, o′),

W0(a0,a−0, ω
′
0) = W0(a0, ȧ−0, ω

′
0) = W0(a0, Ca−0 , ω′0),

R0(s, a0,a−0) = R0(s, a0, ȧ−0) = R0(s, a0, Ca−0)

where δ(a−0) = δ(ȧ−0) = Ca−0 . As such, we may not
recover the original joint action back from the configuration
– a direct consequence of the action anonymity property. The
above equivalences naturally lead to the following property
of the Q-function:

Q0(o, a0,a−0) = Q0(o, a0, ȧ−0) = Q0(o, a0, Ca−0).

Subsequently, the advantage function A0(o, a0,a−0) is also
rewritten with the projection to the configuration. A key ad-
vantage of using configurations is that the space of vectors
of action counts is polynomial in the number of agents in

comparison to the exponential growth of the joint action
space as the number of agents grows.

Notice that action anonymity is a domain feature, indepen-
dent of the modeling approach. Several many-agent domains
naturally exhibit the anonymity-driven joint action permu-
tation invariance property. In addition to Org, consider an
intelligent traffic control system that adjusts the traffic light
duration according to the number of vehicles entering and
leaving a congested intersection. The identities of the ve-
hicles would not be required here. We adapt the IA2C of
Sec. 2.3 to replace joint actions with action configurations
to enable many-agent RL in partially observable settings,
and label this new method as IA2C++. IA2C’s belief filter
is modified and a new dynamic programming module is
prepended to the belief filter in the critic.

3.1.2 Modeling Agent Populations

Equation 3 in Section 2.3 gives the update of agent 0’s belief
over one other agent’s possible models Mj , and this is per-
formed for each other agent j = {1, 2, . . . , N} – growing
linearly inN . Joint action in the private observation function
W0 is now replaced by action configuration, as introduced
previously. But, this also necessitates an additional term in
the equation as we show below.

b′0(m′j |b0, a0, o
′, ω′0) ∝

∑
mj∈Mj

b0(mj)
∑
aj

Pr(aj |mj)

×
∑
C∈Ca−0

Pr(C|b0(M1), b0(M2), . . . , b0(MN))×

W0(a0, C, ω′0)δK(πj , π
′
j) δK(APPEND(hj , 〈aj , o′〉), h′j).

(4)

Here, Pr(C|b0(M1), b0(M2), . . . , b0(MN)) is the probabil-
ity of a configuration in the distribution over the set of con-
figurations Ca−0 . The distribution is obtained from agent
0’s factored beliefs over the models of each other agent us-
ing a known dynamic programming procedure [Jiang et al.,
2011] that is outlined in Algorithm 1 presented in the sup-
plementary material. The algorithm takes as input just N
beliefs each of size |Mj | compared to a single large belief
of exponential size |Mj |N , which is a benefit of the belief
factorization shown in Section 2.3.

By updating beliefs using Eq. 4, each agent maintains belief
distributions over each other agents’ models. However, we
still need to have either true models of other agents or a
pre-defined model set to predict other agents’ actions. In
the case that we do not have enough information about
the domain to manually construct a meaningful pre-defined
set of models for Eq. 4, the accuracy of action prediction
may be insufficient for the learning algorithm to converge.
In such scenarios, the Dirichlet-multinomial distribution
can be used for modeling the agent population. It has been
widely applied for modeling categorical variables and has

found its way into machine learning areas such as natural
language processing [Blei et al., 2002].

Suppose the action space for the homogeneous agent popu-
lation is {a1, a2, . . . , a|A|}, and for each agent i, the prob-
ability of picking action an is θn. Let the distribution
θ = (θ1, θ2, . . . , θ|A|). θ has a Dirichlet-multinomial prior
distribution with parameter α if

Pr(θ|α) =
Γ(
∑
n αn)

ΠnΓ(αn)
Πnθ

αn−1
n (5)

where αn > 0 for all n, α = (α1, α2, . . . , αN), and∑
n θn = 1. We can conveniently write this as θ ∼

Dirichlet(α). Then, probability of an action configuration
C is expressed as:

Pr(C|θ) = Π
|A|
n=1θ

#an

n .

On performing action a0 and receiving a (noisy) private
observation of ω′0 = (#a1,#a2, . . . ,#a|A|)′, the subject
agent’s Dirichlet-multinomial distribution can be updated
by noting that the posterior Pr(θ|ω′0, a0) is proportional to:

∝ Pr(ω′0|θ, a0) Pr(θ|a0) = Pr(ω′0|θ, a0) Dirichlet(α)

=
∑
C
Pr(C, ω′0|a0,θ) Dirichlet(α)

=
∑
C
Pr(ω′0|a0, C,θ)Pr(C|a0,θ) Dirichlet(α)

=
∑
C
W0(a0, C, ω′0) Pr(C|θ) Dirichlet(α) (6)

∝
∑
C
W0(a0, C, ω′0)

(
Π
|A|
n=1θ

#an

n

) (
Π
|A|
n=1θ

αn−1
n

)
=
∑
C
W0(a0, C, ω′0)Π

|A|
n=1 θ

#an+αn−1
n

=
∑
C
W0(a0, C, ω′0) Dirichlet(α+ C) (7)

≈ Dirichlet(α+ C′). (8)

In (6), we utilize the fact that ω′0 is conditionally indepen-
dent of θ given a0, C, and therefore Pr(ω′0|a0, C,θ) is in
fact W0(a0, C, ω′0). We also make a simplifying modeling
assumption in (6) that the true action counts of other agents,
C, is conditionally independent of a0 given θ. For the sake of
tractability, we approximate the last step as a single compo-
nent,Dirichlet(α+C′). We investigate different alternative
ways of calculating C′ later in this subsection. Equation 8
allows each agent to maintain and update its own Dirichlet-
multinomial distribution over the agent population; the pre-
defined model set and individual belief updates introduced
earlier in this section are no longer required.

In this paper, we consider a common model of noise where
an agent observes another agent’s true action with probabil-
ity 1− δ (for a small δ), but observes a different action with

probability mass δ distributed uniformly over the remaining
|A| − 1 actions. Under this model, surprisingly, the cumu-
lative effect of the noise over N agents may decrease with
N , instead of increasing (e.g., with multivariate Gaussian
noise). The proof of the following proposition is included
in the supplementary material.

Proposition 1. The probability of error (which occurs
when an observed configuration ω′0 is different from the
true configuration C) is a decreasing function of N if
N > |A|

log(1/1−δ) , where δ is as defined previously.

Next, we consider the following three methods for calculat-
ing C′ in Eq. 8.

Naive: In this method, we ignore W0 and use the observed
configuration directly to set C′ ← ω′0, despite ω′0 being
noisy.

Rectified: In this method, we proportionately undo the
noise introduced by the δ-noise model. Suppose, C′ =
(#a1′, . . . ,#a|A|′). We expect (1−δ) fraction of #ai′

to contribute to ω′0[i], while the contribution of #aj ′

to ω′0[i] is expected to be δ
|A|−1 , ∀j 6= i. As ω′0 is

given, this yields a system of linear equations for i =
1 . . . , |A|,

ω′0[i] = (1− δ)#ai′ +
∑
j 6=i

δ

|A| − 1
#aj ′ (9)

solving which we can recover the estimated true con-
figuration, C′. Furthermore, as these counts get accu-
mulated by α ← α + C′, increasing the samples on
the left hand side of the above equations, we expect the
solutions to become increasingly accurate.

Optimized: In this method, we set C′ ← arg maxC
W0(a0, C, ω′0)Dirichlet(α+C). This optimization re-
duces the error between the true posterior (Eq. 7) and
its approximation (Eq. 8) while keeping the posterior
computation scalable. It yields an iterative procedure
for updating C based on the gradient of the (log of the)
above objective as shown below.

∆#ak = P
(
∂ logW0

∂#ak
+ ψ(α0 +N)− ψ(αk + #ak)+

log θk

)
where α0 =

∑
k αk, ψ is the digamma function,

ψ(x) = d log Γ(x)
dx , and P ensures the projection of

C onto the plane
∑
i #ai = N . This method is suffi-

ciently general to apply to different noise models. For
instance, if the observation noise is multivariate Gaus-
sian, N (C,Σ), then ∂ logW0

∂C = Σ−1(ω′0 − C). For our
δ-noise model, we approximate ∂ logW0

∂C ≈ (ω′0 − ωC),
where ωC is the left hand side from Eq. 9 obtained by
plugging in C into its right hand side.

CRITIC

Belief Filter

Advantage with Configuration

ACTOR

ENVIRONMENT

b0(mj)

BM0

|Mj| × |O|
∗

|A| V0
|Mj| × |O|

×

Σ Indexing

η normalize

|A| k0

Configuration DP

−
Indexing

Indexing

input

hidden

output

observation

update

action

w o w

o

C
C

adv

Q Value

V Value

Figure 2: The belief filter in the critic utilizes the distri-
bution over configurations from dynamic programming to
update the agent’s belief over models. Predicted actions are
projected to their corresponding configuration and used in
obtaining the advantage. The belief filter module is subse-
quently replaced with the Dirichlet-multinomial update.

3.2 MANY-AGENT INTERACTIVE A2C

We illustrate the many-agent IA2C with belief update (la-
beled as IA2C++BU) architecture in the schematic of Fig. 2.
It consists of two main components: the actor and the critic.
The expression in (10) below gives the actor’s revised gradi-
ent, which is updated as the subject agent 0 interacts with
the environment:

avg [∇θ log π0,θ(a0|o) A0(o, a0, Ca−0)] . (10)

Notice that the actions of the other agents typically appear-
ing in the advantage function are now replaced with its pro-
jected configuration Ca−0(= δ(a−0)). This new advantage
function is computed by the critic as:

A0(o, a0, Ca−0) = avg[r + γ Q0(o′, a′0, Ca
′
−0)−Q0(o, a0, Ca−0)]

where r, o′, and a′0 are samples, a−0 and a′−0 are the pre-
dicted most-likely joint actions of the other agents for the
current and next step, respectively, replaced by their corre-
sponding configurations, and avg is taken over the sampled
trajectories. An agent j’s predicted action for the next time
step is obtained by first sampling its model from the updated
b′0(m′j), where the update occurs as per Eq. 4. The sampled
model yields an action distribution using which the action is
sampled. This procedure is performed for each other agent
and the corresponding configuration is obtained.

Thus, the actor network forwards the public and private
observations from the environment to the belief filter in the
critic. The belief filter first runs the dynamic programming
procedure, uses the output distribution over configurations
to then update agent 0’s belief over other agents’ models,
and predicts their actions. The projection operator yields the
corresponding current and next time-step configurations, all

of which is sent to the critic neural net for gradient-based
updating and then to the advantage module for computing
the advantage function. The latter is sent back to the actor
component for its gradient update.

The IA2C with Dirichlet-multinomial distribution (labeled
as IA2C++DM) replaces the belief update module in
IA2C++BU with a Dirichlet-multinomial distribution. The
network architecture is similar to IA2C++BU except that
the belief filter and the dynamic programming are replaced
with the Dirichlet-multinomial distribution and its update.
The Dirichlet is updated by rectified private observations
at each time step, as described in Sec. 3.1.2. Action con-
figurations are sampled from the updated distributions for
gradient updates in both critic and actor networks. Unlike
the belief update module in IA2C++BU, the update filter
in IA2C++DM can be easily added to most existing actor-
critic methods without requiring a pre-defined model set.

For both IA2C++BU and IA2C++DM, we implement the
actor neural network with one input layer for the observa-
tions, two hidden layers, one with tanh and the other with
ReLU activation, followed by the output layer. The critic
network consists of one input layer for the observations, one
hidden layer with tanh activation followed by the output
layer. All layers are fully connected to the next layer.

4 EXPERIMENTS

Our first experiment domain is the Org domain [He
et al., 2021], which is a partially observable cooperative-
competitive domain where the number of agents can be
easily scaled up arbitrarily without stretching the domain se-
mantics. We select five organization structures as shown in
Fig. 3, which differ in the number of neighborhoods and the
number of agents in each neighborhood. For example, in the
fully connected structure, all agents share one single neigh-
borhood; on the contrary, each agent forms a neighborhood
with its left and right neighbors in the circle structure.

Our second experiment domain is a modified version of
the battlefield in the MAgent environment [Zheng et al.,
2018]. The battle field in Fig. 4a is separated into four sub-
fields. Five agents each from red and blue teams are de-
ployed in each sub-field. Each agent may choose to move
to an adjacent grid from its current location or attack a
nearby opponent. An agent can observe the entire field. The
reward function consists of two parts: individual rewards
and group rewards. An agent receives -1 for moving or
attacking and +10 for eliminating an opponent. An agent
receives a group reward of +2 if its team has more alive
members than the opponent team in each time step. Other-
wise, the agent receives -1 as the group reward. Our imple-
mentation of IA2C++ is available in Python on GitHub at
https://github.com/khextendss/mIA2C.

https://github.com/khextendss/mIA2C

(a) Connected (b) Lattice (c) Circle (d) Star (e) Tree

Figure 3: Various common interaction topologies for the Org domain with 27 agents.

(a) initial position (b) early phase

Figure 4: The battlefield is separated into four sub-fields. (a)
Agents from blue and red teams are initially deployed in the
corners. (b) Agents start battling with opponents.

4.1 COMPARISON OF METHODS FOR
UPDATING DIRICHLET-MULTINOMIAL

We sample the agents’ actions from a fixed mixture distri-
bution, and add δ-noise to them to generate ω′0. Then, the
three methods outlined in Sec. 3.1.2 yield their estimates of
C′, to update the Dirichlet parameters as α← α+ C′. This
is continued for 20 steps in a trial. We compare the learned
distributions Dirichlet(α+ C′) with the true mixture dis-
tribution, and obtain the prediction accuracy measure for
each of the 20 steps across 5 independent trials. The results
are shown in Figs. 5a (a), 5b (b) for 20%- and 50%-noise.

These formative experiments with the three methods show
that both Rectified and Optimized C′ have similar predictive
accuracy, while the Naive estimate is significantly less accu-
rate. As the Rectified method is much faster than Optimized,
we use the former in our subsequent experiments.

4.2 IMPACT OF ORG TOPOLOGIES

We instantiate IA2C with action configuration. Agents re-
ceive group rewards from the neighborhood. We explore
the performance of agents learning using IA2C in the five
topologies of agent connectivity in Org as shown in Fig. 3(a-
e). Our aim is to understand the impact of the differing
neighborhoods in these topologies on the overall learned
reward for the organization. Figure 6 shows the cumula-
tive rewards, summed over all agents in the organization,
obtained from executing the converged policies learned by

(a) Prediction accuracy over 20 steps when δ = 0.2.

(b) Prediction accuracy over 20 steps when δ = 0.5.

Figure 5: Prediction accuracy comparison between naive,
rectified, and optimized methods for obtaining C′.

IA2C. We evaluate this metric for an increasing number
of agents. We observe that the cumulative rewards in the
fully-connected structure are higher than the tree, lattice,
circle, and star structures. Moreover, IA2C converges to
policies with higher cumulative rewards in lattice and cir-
cle structures than the star and tree topologies. This can be
explained by noting that the star and tree structures con-
tain many neighborhoods of only two agents (leaf nodes),
which makes it challenging for those agents to coordinate
across these small neighborhoods without knowing the ac-
tions of agents outside their neighborhoods. As such the
fully-connected structure shows the best performance where
everybody knows what everybody is doing, but, of course,
the computational complexity is greater causing IA2C to
converge relatively slowly.

Figure 6: Averaged cumulative rewards comparison between
various Org topologies for 27, 60, 80, and 100 agents.

4.3 MODELING OTHERS

Next, we compare the performance of the previous belief up-
date (IA2C++BU) to the Dirichlet-multinomial distribution
(IA2C++DM) in terms of prediction accuracy and run time.
We measure the accuracy by the KL-divergence between
predicted action distribution and the true action distribution.
Figure 7a shows KL-divergence of both methods for the dif-
ferent number of agents under various private observation
noises after 1,000 updates. The belief update method has
lower divergence than the Dirichlet-multinomial distribution
when δ-noise is less than 0.2 for 10 and 100 agents. Due to
the small sample size, the Dirichlet-multinomial distribution
does not perform well for 10 gents. It achieves comparable
divergence for 100 agents and has lower divergence than
belief update for 1,000 agents. It also shows the ability to
maintain accurate predictions in more noisy environments.
Figure 7b shows a run time comparison of the two methods
with δ = 0.4. The run time of the Dirichlet-multinomial
distribution increases linearly with respect to the number of
agents while having a small slope. The run time of belief
update increases significantly faster since the belief update
process needs to be done for every single agent and the
extra computation required by dynamic programming for
configuration distribution.

As a result, the belief update is better suited for modeling
small agent population with less than 0.3 private observation
noise; the Dirichlet-multinomial distribution works well
with large agent populations and noisier environments.

4.4 PERFORMANCE COMPARISON

We compare IA2C++BU and IA2C++DM with the
mean-field actor-critic [Yang et al., 2018] (MF-AC) and
QMIX [Rashid et al., 2018] on the tree, star, and fully con-
nected Org and MAgent battlefield with 100 agents. QMIX
uses the sum of mean rewards of all agents as the team re-
ward. We limit the run time to 20 hours and set the private

(a) Divergence comparison (b) Run time comparison

Figure 7: (a) KL-divergence of the belief update method
and Dirichlet-multinomial distribution method for 10, 100,
and 1,000 agents. The private noise probability denotes the
probability of receiving a noised private observation. (b)
Run time of belief update and Dirichlet distribution update.
All experiments are conducted on a standard Linux PC with
Intel i7 processor (8 cores, 3.6 GHz) and 64 GB memory.

observation noise at 0.2. 2

Figure 8 shows cumulative rewards and win rates of poli-
cies learned by all methods in Org and MAgent battlefield.
IA2C++DM converges to the optimal policy within the
shortest time. The large population size causes the belief
update process in IA2C++BU to slow down the learning.
However, IA2C++DM benefits from the large agent pop-
ulation. The Dirichlet multinomial model accurately and
efficiently predicts the configuration of the agent population.
Due to the noised private observations, MF-AC and QMIX
do not converge to optimal policy within the given time
limit.

5 RELATED WORK

Mean-field Q-learning (MF-Q) [Yang et al., 2018] is a Q-
learning method that scales to many agents. If the agents
are indistinguishable and independent from each other, they
are substituted by a single virtual agent which performs the
mean action. The Q-value of the state and joint action is ap-
proximated by the Q-value of the state and the mean action.
A mean-field actor-critic (MF-AC) is also presented, but ex-
periments show that MF-AC rarely improves on MF-Q. Par-

2We use time in hours as the measure on the x-axes rather
than episodes because the methods utilize different ways of scal-
ing and tackling partial observability. Number of episodes may
conceal critical information about algorithm efficiency. For exam-
ple, IA2C++BU and IA2C++DM spend time on modeling the
agent population via belief update and Dirichlet distribution up-
date, respectively. On the other hand, QMIX and MF-AC infer
other agents’ actions by MLE, which is faster. However, the noisy
observations makes them require more episodes to converge. As
such, measures of elapsed (clock) time accounts for all such consid-
erations. Nevertheless, we show cumulative rewards with respect
to episodes as well in the supplementary material.

(a) Tree (b) Star (c) Fully Connected (d) Battlefield

Figure 8: Cumulative reward of learned policies in (a) tree structure, (b) star structure, and (c) fully connected structure. (d)
Win rate against pre-trained agents in the MAgent battlefield domain. All experiments are conducted on a standard Linux
PC with Intel i7 processor (8 cores, 3.6 GHz) and 64 GB memory.

tially observable mean-field Q-learning (POMF-Q) Gana-
pathi Subramanian et al. [2021] extends MF-Q to partially
observable settings. Each agent maintains a Dirichlet distri-
bution for current population and the mean action is sampled
from the Dirichlet. Although POMF-Q adopts a similar way
to model agent populations, other agents’ actions are per-
fectly observed (i.e., noiseless private observations) and the
algorithm is specifically designed for spatial domains. In
contrast, IA2C++DM is not limited to spatial domains and
permits noisy private observations, which is realistic but
makes the Dirichlet-multinomial update much less straight-
forward.

In contrast to our use of action configurations, Verma,
Varakantham, and Lau [Verma et al., 2019] utilize state
configurations under anonymity in the form of counts of
agents located in various zones (the agents are taxis). Other
agents’ actions in the transition and reward functions are
now replaced by state configurations without loss of infor-
mation in the taxi domain. Algorithms that extend deep
Q-networks and A2C to these settings are presented. How-
ever, the state is perfectly observed obviating the need for
distributions over configurations, and the experiments were
mostly limited to 20 agents operating in about 100 zones.

A recent scalable MARL technique is QMIX [Rashid et al.,
2018] which utilizes neural networks to estimate the joint
action value function as a nonlinear combination of individ-
ual agent value functions. At the same time, QMIX enforces
a monotonic relationship between a centralized Q-value and
individual Q-values, which allows the joint-action value
maximization in off-policy learning to be tractable. Nev-
ertheless, QMIX uses an unweighted mixing projection in
cooperative settings, which can lead to suboptimal policies.
Weighted-QMIX [Rashid et al., 2020] overcomes this issue
by infusing a weighting function into the projection from the
joint action to the mixing network. However, as we showed
in the previous section, the method may not be robust to
noisy observations of others’ actions.

6 CONCLUDING REMARKS

We presented new scalable actor-critic MARL algorithms
built on the property of action anonymity that scales polyno-
mially with the number of agents. Owing to a quadratic-time
Dirichlet-multinomial distribution approach for modeling
agent populations under partial observability, our method is
able to accurately and efficiently predict action configura-
tions for large agent populations. When compared to recent
many-agent MARL methods that assume other agents’ poli-
cies or actions are observed accurately, our methods show
superior performance in terms of the quality of learned poli-
cies and convergence speed.

The noise-based exploration employed in recent MARL al-
gorithms can be slow. In this regard, Liu, Jain, Yeh, and
Schwing [Liu et al., 2021] propose cooperative multi-agent
exploration (CMAE), which introduces a bottom-up explo-
ration scheme that projects the high-dimensional state space
to low-dimensional spaces and gradually explores from low-
to high-dimensions. Empirical results show that CMAE in-
creases exploration efficiency, particularly in sparse-reward
environments. Integrating CMAE into IA2C’s explorations
could be an interesting avenue for future work to gain faster
convergence.

Acknowledgements

This work was supported in part by a grant from NSF #IIS-
1910037 (to PD) and UGA’s RIAS program for graduate
students. We thank Nitay Alon for his technical feedback
during a seminar presentation at HUJI and the anonymous
reviewers for their valuable suggestions.

References

Daniel S. Bernstein, Robert Givan, Neil Immerman, and
Shlomo Zilberstein. The complexity of decentralized

control of markov decision processes. Mathematics of
Operations Research, 27(4):819–840, 2002.

David Blei, Andrew Ng, and Michael Jordan. Latent dirich-
let allocation. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 14. MIT Press, 2002.

Daniel C. Dennett. Intentional systems. Journal of Philoso-
phy, 68:87–106, 1971.

Prashant Doshi. Decision making in complex multiagent
contexts: A tale of two frameworks. AI Magazine, 33(4):
82, Dec. 2012.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson. Counterfactual
multi-agent policy gradients. In Association for the Ad-
vancement of Artificial Intelligence (AAAI), pages 2974–
2982, 2018.

Sriram Ganapathi Subramanian, Matthew Taylor, Mark
Crowley, and Pascal Poupart. Partially observable mean
field reinforcement learning. In Autonomous Agents and
MultiAgent Systems (AAMAS), pages 537–545, 2021.

Piotr Gmytrasiewicz and Prashant Doshi. A framework for
sequential planning in multi-agent settings. Journal of
Artificial Intelligence Research (JAIR), 24:49–79, 2005.

Keyang He, Bikramjit Banerjee, and Pranshant Doshi.
Cooperative-competitive reinforcement learning with
history-dependent rewards. In Autonomous Agents and
Multiagent Systems (AAMAS), pages 602–610, 2021.

Junling Hu and Michael P. Wellman. Nash q-learning for
general-sum stochastic games. The Journal of Machine
Learning Research, 4:1039–1069, 2003.

Albert Xin Jiang, Kevin Leyton-Brown, and Navin A.R.
Bhat. Action-graph games. Games and Economic Behav-
ior, 71(1):141–173, 2011.

Boyan Jovanovic and Robert W. Rosenthal. Anonymous
sequential games. Journal of Mathematical Economics,
17(1):77–87, 1988.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.
Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1–2):
99–134, 1998.

Michael L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In International Con-
ference on Machine Learning (ICML), pages 157–163,
1994.

Iou-Jen Liu, Unnat Jain, Raymond A. Yeh, and Alexander G.
Schwing. Cooperative exploration for multi-agent deep
reinforcement learning. In International Conference on
Machine Learning (ICML), 2021.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
Neural Information Processing Systems (NeurIPS), pages
6382–6393, 2017.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de
Witt, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. Qmix: Monotonic value function factorisa-
tion for deep multi-agent reinforcement learning. In In-
ternational Conference on Machine Learning (ICML),
2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon
Whiteson. Weighted qmix: Expanding monotonic value
function factorisation. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pages 10199–10210,
2020.

Ekhlas Sonu, Yingke Chen, and Prashant Doshi. Decision-
theoretic planning under anonymity in agent populations.
Journal of Artificial Intelligence Research (JAIR), 59(1):
725–770, May 2017.

Pradeep Varakantham, Yossiri Adulyasak, and Patrick Jail-
let. Decentralized stochastic planning with anonymity
in interactions. In Association for the Advancement of
Artificial Intelligence (AAAI), page 2505–2511, 2014.

Tanvi Verma, Pradeep Varakantham, and Hoong Chuin Lau.
Entropy based independent learning in anonymous multi-
agent settings. In International Conference on Automated
Planning and Scheduling (ICAPS), pages 655–663, 2019.

Christopher Watkins. Learning from delayed rewards. Ma-
chine Learning, 8:279–292, 1992.

Yadong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan
Zhang, and Jun Wang. Mean field multi-agent reinforce-
ment learning. In International Conference on Machine
Learning (ICML), 2018.

Lianmin Zheng, Jiacheng Yang, Han Cai, Ming Zhou,
Weinan Zhang, Jun Wang, and Yong Yu. Magent: A
many-agent reinforcement learning platform for artificial
collective intelligence. In Association for the Advance-
ment of Artificial Intelligence (AAAI), 2018.

	Introduction
	Background
	Organization Domain
	I-POMDP model of Org
	Interactive A2C for Mixed Settings

	Many-Agent RL Under Partial Observability
	IA2C using Action Configurations
	Action Configurations
	Modeling Agent Populations

	Many-Agent Interactive A2C

	Experiments
	Comparison of Methods for Updating Dirichlet-Multinomial
	Impact of Org Topologies
	Modeling Others
	Performance Comparison

	Related Work
	Concluding Remarks

