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ABSTRACT
Robots learning from observations in the real world may encounter

objects or agents in the environment, other than the expert giv-

ing the demonstration, that cause nuisance observations. These

confounding elements are typically removed in fully-controlled

environments such as virtual simulations or lab settings. When

complete removal is impossible the nuisance observations must

be filtered out. However, identifying the sources of observations

when large amounts of observations are made is difficult. To address

this, we present a hierarchical Bayesian process that models both

the expert’s and the confounding elements’ observations thereby

explicitly modeling the diverse observations a robot may receive.

We extend an existing inverse reinforcement learning algorithm

originally designed to work under partial occlusion of the expert to

consider the diverse and noisy observations. In a simulated robotic

produce-sorting domain containing both occlusion and confound-

ing elements, we demonstrate the model’s effectiveness. In particu-

lar, our technique outperforms several other comparative methods,

second only to having perfect knowledge of the subject’s trajectory.
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1 INTRODUCTION
A known modality for imitation learning in robotics [15] is to

employ a sensor suite to learn from observing (LfO) the expert. The

sensed data constitutes a trajectory, usually modeled by a Markov

decision process (MDP), which specifies the state of and action taken

by the subject agent at successive time steps as it performs the task.

Techniques such as classical machine vision and deep learning may

be combined to automate this process for complex sensors such as

depth cameras [22]. On acquiring the trajectories, they are used by

a machine learning method such as inverse reinforcement learning

(IRL) [2, 18], to learn a model of the subject’s demonstration so that

an apprentice robot may then perform the same task.

While our ultimate concern pertains to the deployed robot’s

performance, a significant amount of effort goes into developing

the portion of the LfO pipeline used only during demonstrations.
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It is this portion which yields the trajectories that are used in the

learning. Clearly, a challenge for the learning is the inherent noise

present in the sensor stream. The vision may fail to uniquely iden-

tify the state or action of the subject, deployed sensors may fail

temporarily while observing the task being performed, or the de-

tection is obfuscated due to the presence of confounding elements

in the environment. Confounding elements are objects in the back-

ground, other agents moving through the environment, or objects

that cause occlusion of the expert. Either by strictly controlling

the environment during demonstrations, repeating demonstrations

multiple times, or manually editing noisy sensor streams, such

practical issues are overlooked by the extant literature.

In this paper, we present a general hierarchical Bayesian process

that models the uncertainty present in observations of the expert

agent demonstrations in partially controlled, real-world situations

to perform imitation learning. We define a partially-controlled envi-

ronment as one which contains a finite and static set of confounding

elements, which are known. Our model exploits the underlying

incomplete MDP that is being learned to provide structure to noisy

observation data and is integrated into a previous technique for

IRL under occlusion [5, 7] that generalizes the classical maximum

entropy optimization. We demonstrate our model’s effectiveness

in a formative Gridworld scenario and in a larger robotic produce-

sorting experiment in which a number of confounding elements

are present.

2 PRELIMINARIES
IRL connotes both the problem and method by which an agent

learns goals and preferences of another agent that explain the

latter’s observed behavior [18, 21]. The observed subject agent E is

often considered an “expert” in the performed task. To model the

subject agent, it is assumed that the expert is executing an optimal

policy based on a standard MDP ⟨𝑆,𝐴,𝑇 , 𝑅⟩. The learning agent L
is assumed to exhibit perfect knowledge of the MDP parameters

except of the reward function. Therefore, the learner’s task is to

infer a reward function that best explains the observed behavior of

the expert under these assumptions. A policy is a function mapping

each state to an action. It can be deterministic, 𝜋 : 𝑆 → 𝐴 or

stochastic, 𝜋 : 𝑆 → 𝑃𝑟 (𝐴). The value function 𝑉 𝜋 : 𝑆 → R gives

the value of a state 𝑠 as the long-term expected cumulative reward

obtained from the state by following 𝜋 . The value of a policy 𝜋 from

some initial state 𝑠0 is an expectation,𝑉
𝜋 (𝑠0) = 𝐸

[∑∞
𝑡=0 𝛾

𝑡𝑅(𝑠𝑡 ) |𝜋
]
,

where 𝛾 ∈ (0, 1) is a discount factor.
The problem of IRL is generally ill-posed because for any given

behavior there are infinitely-many reward functions which may

explain the behavior. Ng and Russell [18] initially approached the

problem with linear programming inferring a reward function that



maximizes the difference between the value of the expert’s optimal

policy and the next best policy under the assumption that the ex-

pert’s complete policy is available. Abbeel and Ng [1] relaxed this

assumption using an algorithm in which the expert, E, provides a

demonstration of the task performance instead of its policy. (Demon-

strations may be seen as composed of simulations of the expert’s

optimal policy.) The reward function is modeled as a linear combi-

nation of 𝐾 > 0 binary features, 𝜙𝑘 : 𝑆 ×𝐴→ [0, 1], 𝑘 ∈ {1, 2 . . . 𝐾}.
Each feature maps a state from the set of states, 𝑆 , and an action

from E’s set of actions,𝐴𝐸 , to a value in {0,1}. Choosing appropriate

feature functions is important, and, if these are not known to the

learner, they can be learned from the data thereby diminishing the

need for feature engineering [17].

The reward function for the expert, E, is then defined as 𝑅(𝑠, 𝑎) =
𝜽𝑇𝜙 (𝑠, 𝑎) = ∑𝐾

𝑘=1
\𝑘 · 𝜙𝑘 (𝑠, 𝑎), where \𝑘 are the weights in vec-

tor 𝜽 ; let R = R |𝑆×𝐴 | be the continuous space of reward func-

tions. The learner task is simplified to one of completing the re-

ward function by finding an appropriate vector of weights so that

the demonstrated behavior is optimal. The data for IRL is in the

form of a demonstration, which is usually comprised of trajec-

tories. A trajectory of finite length 𝑇 assumed to be generated

by the MDP attributed to the expert is defined as X𝑇 = {𝑋 |𝑋 =

(⟨𝑠, 𝑎⟩1, ⟨𝑠, 𝑎⟩2, . . . , ⟨𝑠, 𝑎⟩𝑇 )},∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴}. A demonstration is

some finite, non-empty collection of trajectories of varying lengths,

X = {𝑋 |𝑋 ∈ X𝑇 }.
As the expert’s policy is unavailable to the learner, the vector of

weights is found by comparing the feature expectations of all pos-

sible trajectories to feature counts empirically estimated from the

expert’s policy [30]. The expert’s feature expectations are estimated

using the average of feature values for all observed trajectories,

ˆ𝜙𝑘 = 1

|X |
∑
𝑋 ∈X

∑
⟨𝑠,𝑎⟩𝑡 ∈𝑋 𝜙𝑘 (⟨𝑠, 𝑎⟩𝑡 ). The learner completes the

expert’s MDP using the learned reward function and may solve it

to obtain 𝜋 . Due to the ill-posed nature of the problem, the learned

reward function may not be directly compared to the true function,

if known. Instead, a popular metric is the inverse learning error
(ILE) [11] of a learned reward 𝑅 obtained as ILE = | |𝑉 𝜋𝐸 −𝑉 𝜋𝐿 | |1,
where 𝑉 𝜋

𝐸
is the value function computed using the true reward

and the expert’s optimal policy,𝑉 𝜋
𝐿
is the value function using the

true rewards and the optimal policy for the learned reward.

2.1 Maximum Entropy IRL
The max-margin approach of Abeel and Ng [1] introduces a bias

into the learned reward function. Biases can help guide the search

in ill-posed problems, but they may preclude other meaningful

solutions. Consequently, this motivates methods that make the

least assumptions. Toward this, Ziebart et al. [30] finds the distri-

bution over the trajectories that exhibits the maximum entropy

while matching the observed feature expectations. The following

nonlinear program gives this distribution.

max

Δ

(
−
∑

𝑋 ∈X
𝑃𝑟 (𝑋 ) 𝑙𝑜𝑔 𝑃𝑟 (𝑋 )

)
subject to

∑
𝑋 ∈X

𝑃𝑟 (𝑋 ) = 1

𝐸X [𝜙𝑘 ] = ˆ𝜙𝑘 ∀𝑘 (1)

Here, 𝐸X [𝜙𝑘 ] =
∑
𝑋 ∈X 𝑃𝑟 (𝑋 )

∑
⟨𝑠,𝑎⟩𝑡 ∈𝑋 𝜙𝑘 (⟨𝑠, 𝑎⟩𝑡 ) is the feature

expectation. The problem reduces to finding 𝜽 , which parameterizes

the exponential distribution that exhibits the highest likelihood:

𝑃𝑟 (𝑋 ) ∝ 𝑒
∑
⟨𝑠,𝑎⟩𝑡 ∈𝑋 𝜽𝑇𝜙 (𝑠,𝑎)

. Notice that the chances of an expert

agent following a trajectory is proportional to the cumulative re-

ward incurred along that path. The benefit of this approach is that

distribution 𝑃𝑟 (𝑋 ) makes no further assumptions beyond those

which are needed to match its constraints and is maximally non-

committal to any one trajectory. As such, it is most generalizable

by being the least wrong most often of all alternative distributions.

A disadvantage is that it becomes intractable for long trajectories

because the set of trajectories grows exponentially with timesteps.

To address this, another formulation, MaxCausalEntIRL [29], finds

stochastic policies with maximum entropy.

2.2 IRL under Occlusion: HiddenDataEM
Our motivating application involves a collaborative robotic arm

sorting produce as they move down a conveyor belt in a processing

shed. It learns how to sort by using its sensors to observe an expert

worker over an extended period. However, the activity may not be

fully observed due to various reasons such as other persons acciden-

tally walking in front of the camera. Previous methods [6] denote

this special case of incomplete observability where some states are

fully hidden as occlusion. Subsequently, the trajectories gathered by
the learner exhibit missing data associated with timesteps where

the expert is in one of the occluded states. The empirical feature

expectation of the expert
ˆ𝜙𝑘 would exclude the occluded states (and

actions in those states).

To ensure that the feature expectation constraint of IRL methods

accounts for the missing data, recent approaches [5, 7] take an

expectation over the missing data conditioned on the observations.

Completing the missing data in this way allows the use of all states

in the constraint and with it the Lagrangian dual’s gradient as well.

The nonlinear program of (1) is modified to account for the hidden

data and its expectation.

Let 𝑌 be the observed portion of a trajectory, 𝐻 is one way of

completing the hidden portions of this trajectory, and 𝑋 = 𝑌 ∪ 𝐻 .
Treating𝐻 as a latent variable gives a new definition for the expert’s

empirical feature expectations:

ˆ𝜙
𝐻 |𝑌
𝜽 ,𝑘

≜
1

|Y|
∑
𝑌 ∈Y

∑
𝐻 ∈H

𝑃𝑟 (𝐻 |𝑌 ;𝜽 )
𝑇∑
𝑡=1

𝜙𝑘 (⟨𝑠, 𝑎⟩𝑡 ) (2)

where ⟨𝑠, 𝑎⟩𝑡 ∈ 𝑌 ∪ 𝐻 , Y is the set of all observed 𝑌 , H is the

set of all possible hidden 𝐻 that can complete a trajectory. The

program in (1) is modified by replacing
ˆ𝜙𝑘 with

ˆ𝜙
𝐻 |𝑌
𝜽 ,𝑘

. Notice that

in the case of no occlusion H is empty and X = Y. Therefore
ˆ𝜙
𝐻 |𝑌
𝜽 ,𝑘

= ˆ𝜙𝑘 and this method reduces to (1). Thus, this approach

generalizes the previous maximum entropy IRL method. However,

the program becomes nonconvex due to the presence of 𝑃𝑟 (𝐻 |𝑌 ).
As such, finding its optima by Lagrangian relaxation is not trivial.

Wang et al. [26] suggests a log-linear approximation that casts

the problem of finding the parameters of the distribution (reward

weights) as a likelihood maximization that can be solved within the

schema of expectation-maximization [13]. An application of this

approach to the problem of IRL under occlusion yields a method

labeled as HiddenDataEM, which consists of the following two

steps (with more details in [7]):



E-step This step involves calculating Eq. 2 to arrive at
ˆ𝜙
𝐻 |𝑌 ,(𝑡 )
𝜽 ,𝑘

, a

conditional expectation of the 𝐾 feature functions using the pa-

rameter 𝜽 (𝑡 ) from the previous iteration. We may initialize the

parameter vector randomly.

M-step In this step, the modified program is optimized by utilizing

ˆ𝜙
𝐻 |𝑌 ,(𝑡 )
𝜽 ,𝑘

from the E-step above as the expert’s feature expectations

to obtain 𝜽 (𝑡+1) . Now, optimizing the relaxed Lagrangian becomes

easier. Unconstrained adaptive exponentiated gradient descent [23],

a version of gradient descent in which the learned parameter is

scaled using the exponent of the gradient, solves the program. This

variant of the gradient descent exhibits improved worst-case loss

bounds over the standard gradient descent and often converges

faster.

As EM may converge to local minima, this process is repeated

with random initial 𝜽 and the solution with the maximum entropy

is chosen as the final one.

3 CONTROLLED ENVIRONMENTS
HiddenDataEM assumes that trajectories are noiselessly observed

with some data missing due to occlusion. Data acquired from a

robot’s sensor suite, however, is likely to be noisy and provides

partial information about the subject. We aim to generalize the

E-step of HiddenDataEM to environmental and sensing noise to

obtain a distribution over possible demonstrations X given the

observations.

We first discuss a simplification of our model. It applies to sce-

narios where the learner (or its operator) has full control over the

environment such that there is no possibility of extraneous observa-

tions and the learner has perfect knowledge of the state and action

of the subject agent at each timestep. This is a popular assumption
for IRL, often possible in simulations only, but not practicable in many
real-world robotic contexts.

We emphasize that the sensor data may be markedly different

from the state-action trajectory data. For instance, suppose a video

camera is used to record the expert and a machine vision algorithm

such as SIFT processes the video stream and produces a stream

of features, which we call observations. If this camera runs at 30

fps, potentially hundreds to thousands of observations are generated
every second, with many duplicates. Now, let the MDP timestep

correspond to one wall-clock second and the state and action sets be

discrete. Then, let these observations be modeled by an observation

function (sensor model) dependent on the subject’s state and action

variable, i.e., 𝑂 (𝑠, 𝑎, 𝜔), where 𝜔 ∈ Ω are sensed observations (fea-

tures). We show this model graphically in Figure 1 (left). Of note

is that there may be any number of observations at each timestep,

𝑁𝑡 . This characteristic makes it different from a hidden Markov

model in which the state and action of the expert are also hidden

but which models a single observation at each timestep.

It is generally impractical to have complete knowledge of 𝑂 due

to the nature of these complex observations. Instead, we allow𝑂 to

be sampled from a Dirichlet distribution with hyperparameters 𝜶 .

Let the likelihood distribution of Ω be multinomial, which makes

the Dirichlet over 𝑂 a conjugate prior and allows us to set 𝜶 to be

the count of each observation seen per state and action.

Controlled environments, such as simulations, facilitate this pro-

cedure as the state and action of the subject may be perfectly known.

Figure 1: (left) A hierarchical Bayesian process for a con-
trolled environment displayed in plate notation. At each
timestep 𝑡 , 𝑁𝑡 observations 𝝎 are sampled from the ob-
servation model 𝑂𝑆,𝐴. (right) The partially-controlled envi-
ronment requires an expanded hierarchical process model.
Each observation 𝜔𝑡,𝑛 is labeled with its source, 𝑍𝑡,𝑛 , which
may be the expert or a confounding element belonging to E.
As the true source may not be known, we sample it from the
distribution [𝑡,𝑛 .

This learned model may then be transferred to less controlled en-

vironments. However, we may expect the expert to present some

significant observation differences in this case. Therefore, we may

need to scale the hyperparameters by a small constant to prevent

overfitting.

4 PARTIALLY-CONTROLLED
ENVIRONMENTS

Of course, LfO cannot usually be performed in sterile, controlled

environments. Confounding elements often remain in the environ-

ment during demonstrations which cause extraneous observations.

These observations must be filtered out in order to prevent incorrect

trajectories from being produced that will distort the learning.

This is a problem of data association: if each observation has its

source perfectly labeled we could simply exclude all non-subject

agent observations and use the controlled environment model from

Section 3. However, an observation’s source may not be pinpointed

perfectly due to the inherent noise. One common approach is to re-

strict the accepted observations in the hope that non-subject agent

observations will be removed. But this increases the chances of

occlusion when many of the available observations are not clear.

This also precludes using unexpected, opportunistic observations,

such as the presence of a mirror or a reflective surface in the envi-

ronment, as these extra sources may get filtered out.



We take a novel approach with the goal of utilizing all avail-

able information while identifying and filtering out observations

caused by confounding elements. Suppose we enumerate every

confounding element present in the environment during demon-

strations (this is reasonable assuming that the environment has

been at least partially controlled to limit these elements). Then,

the set of observations received at a given timestep is due to some

mixture of these elements and the subject agent. Let E be the set of

all confounding elements. To the previous Bayesian process model,

we add a label variable 𝑍 for each observation𝜔 , where 𝑍 identifies

the source of 𝜔 and may take on a value either from E or one addi-

tional value indicating “subject agent”. We expand the observation

model to include all elements in E. Note that when 𝑍 labels an 𝜔

as “subject agent” the observation model conditional on the subject

agent’s state and action is chosen, as was the case in our controlled

environments model. Thus, 𝑍 acts as a multiplexer select input.

As machine vision is often uncertain about the identification

of an observation, 𝑍 is itself unknown. Thus, we model it as being
sampled from a distribution[ (𝑍 ), which incorporates any information
the observation system has about the source of a given 𝜔 and is of
length 1 + |E|, with the first entry indicating “subject agent”. This
allows for a rich set of information to be incorporated beyond

simply that an 𝜔 was observed. An advanced system could track

the movement of agents to help with the identification, it could

interpret the observation in the context of others nearby, or express

that an observation was vague or unusual. To illustrate, object

detection using the Python ImageAI library could be employed on a

RGB video stream to produce observations. These systems produce

a probability distribution of possible object identifications for each

detected object, which could be utilized as [. We show the new

generalized hierarchical Bayesian process in Figure 1 (right).

4.1 Finding the Expert’s Trajectory
Distribution

Let O = {⟨𝝎,𝜼⟩1, ⟨𝝎,𝜼⟩2, . . . , ⟨𝝎,𝜼⟩ |X |} be the set of observed

trajectories produced from the subject’s demonstration X each as-

sociated with a distribution over their corresponding labels (source

distribution). To compute distributions over trajectories given 𝛼

and O we also require the subject’s policy 𝑃𝑟 (𝐴|𝑆). Unfortunately,
as IRL is attempting to learn this distribution, we will not have the

correct policy ahead of time. We resolve this by using the currently

found trajectory distributions to compute
ˆ𝜙 in the E-step of Hid-

denDataEM, revising Eq. 2 to yield Eq. 3. Using the policy produced

by the subsequent M-step we iteratively improve our likelihood

estimate of the subject’s true demonstration.

ˆ𝜙O𝜽 ,𝑘 ≜
1

|O|
∑

⟨𝝎,𝜼⟩∈O

∑
𝑋 ∈X

𝑃𝑟 (𝑋 |𝝎,𝜼;𝜽 )
𝑇∑
𝑡=1

𝜙𝑘 (⟨𝑠, 𝑎⟩𝑡 ) (3)

Wemay employ the Baum-Welch algorithm [19] to find the distri-

butions 𝑃𝑟 (𝑋 |𝝎,𝜼;𝜽 ). However, due to the large amounts of obser-

vation nodes per trajectory we replace the forward-backward mes-

sage passing of Baum-Welch with Markov chain Monte Carlo sam-

pling to improve performance. As shown inAlgorithm 1 Hierarchical
Bayes Inference present in Appendix A at the end of this paper,

we first sample all the local nodes (𝑆,𝐴, 𝑍 ) to produce distributions

over all complete trajectories, update the observation model us-

ing these distributions, and repeat until convergence. We employ

Metropolis-within-Gibbs sampling [24], a hybrid technique similar

to Gibbs sampling, which samples individual nodes one at a time.

However, when the transition function of the underlying MDP is de-
terministic, we may not efficiently sample one state or action node
at a time due to the probability of all transitions but one being zero.
Then, our algorithm samples a trajectory’s entire set of state-action

nodes at once using a method similar to Metropolis-Hastings.

4.2 Exploiting Indirect Observations
Although occlusion of the subject is one potential challenge in

partially-controlled environments, it may bemitigated by exploiting

indirect observations received from the subject.

By definition, the percept that causes an indirect observation

does not travel directly from the subject agent to the learner’s

sensors, rather it reflects or bounces off of some part of the environ-

ment, appearing to come from elsewhere than the subject. These

observations could include mirror reflections, natural pinspeck cam-

eras [25], shadows [3], and changes in ambient color. Because they

partly depend on the specific demonstration environment, these

observations are difficult to manually specify and detect. It is also

difficult to simulate them, as they rely on complex calculations such

as ray tracing for optical physics, requiring extensive computation

time.

As a simple instance of indirect observations countering occlu-

sion, suppose a color blob finder is being used to identify an object

being manipulated by a robot. If a reflective surface exists in the

environment, such as a mirror behind the robot, we may receive

consistent indirect observations from this surface. If the object is

accidentally occluded from direct view, it is possible the reflection

is still visible and can be used to identify the object.

Our approach is to allow the observation model,𝑂 , to be updated

from the available demonstration data. This can be seen in line 23

of Algorithm 1 (see Appendix A at the end of this paper), where we

gradually update 𝛼𝑖 using ¤𝛼 found using the expected trajectories

at iteration 𝑖 and the previous values. In occluded timesteps, the

number of observations directly caused by the subject agent is

small, if any. Thus, any indirect observations greatly influence the

resulting distribution over the expert’s states and actions in these

timesteps.

5 EXPERIMENTS
We implemented Algorithm 1 and evaluate it on a toy Gridworld

as well as in our domain of key interest – the sorting of produce

using a robotic manipulator.

5.1 Formative Tests on Gridworld
We evaluate our model first on a 5×5 Gridworld MDP. The Grid-

world’s reward function has four features corresponding to being

in each of the four corners, with one corner randomly chosen to

be the goal. We define four observations corresponding to each

of the corners. The true observation function has each occurring

exponentially more likely as the agent gets closer to the respective

corner. For more details about the Gridworld, see Appendix B in

the supplement.



To this model we add some confounding elements, each with its

own random observation function. For our experiment we simulate

the subject agent moving through the Gridworld 20 times, and at

each timestep produces 40 observations sampled with equal proba-

bilities from the subject agent’s and each confounding element’s

observation function. Thus, as the number of confounding elements

increases, the proportion of observations attributed to the subject

reduces thereby making this a difficult learning task.
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Figure 2: Average ILE of various techniques as the number
of confounding elements increases in Gridworld. Each data
point is the result of 65+ runs. Error bars are 95% confidence
intervals on the mean. Lower ILE is preferred.

Figure 2 shows the ILE of the algorithm and several baselines.

First, True Trajectories where the subject’s true trajectories are

input into MaxCausalEntropyIRL [28], has zero error as expected.

Next is a variant where the True Observation Function 𝑂 of the

subject and those of the confounding elements are known to the

learner but all [ are uniform. Thus, the source 𝑍 of each observa-

tion is not known. It exhibits excellent performance with up to 6

confounding elements. In the next two variants, the observation

model 𝑂 is unknown but an informative Dirichlet prior 𝛼 is used

for the expert and a symmetric (uninformative) prior for the con-

founding elements.
1 Uniform [ uses a uniform [ distribution for all

observations in the hierarchical Bayesian process while Plausible [
has a 80% chance of assigning the true source of an observation

0.6 probability mass, otherwise a random source is given this mass.

Finally, Ignore CE treats all observations as if they came from

the subject and gives the lower bound. It achieves 0 error with no

confounding elements but ILE rapidly rises as |E | grows. Overall,
Fig. 2 shows that our technique with a plausible [ performs nearly

as well as having the true trajectories with up to 13 confounding

elements.

5.2 Summative Tests using Robotic Onion
Sorting

Domain description We now examine the performance of our

technique in a larger produce sorting task. A simulated Sawyer ro-

bot arm is tasked with inspecting onions moving down a conveyor

1
Informative observation model priors for confounding elements did not significantly

impact performance in our experiments.

belt and sorting good onions from blemished ones. A blemished

onion exhibits dark portions which may be visible while on the con-

veyor but will generally require a closer inspection by the robot’s

cameras. In this pick-inspect-place scenario we desire installing

a new robot that will work alongside the existing one to increase

sorting capacity. Rather than manually program the new robot,

however, we wish to have it learn from watching the existing one’s

behavior in a production environment, such as a packing shed,

where many confounding elements are present that cannot be re-

moved. Examples of such elements include other shed workers and

stations sorting produce other than onions. To assist the learner,

we place a mirror behind the sorting robot to give the learner an

additional viewpoint into the inspection. When the subject robot

is occluded from the learner’s view, the mirror offers indirect obser-
vations of the onion being inspected and the expert’s actions to the
learner.

A state of our MDP for the sorting task is factored and composed

of 3 discrete variables: Onion Quality (unknown, good, blemished),

Onion Position (on_conveyor, gripped, in_bin), and Gripper Posi-
tion (conveyor, bin, inspection).

Actions cause certain changes in the state. Any action may be

taken in any state but will have no effect (state unchanged) other

than those described here.

• Grip onion changes an onion’s position from on_conveyor to

gripped with probability 1;

• Release onion changes an onion’s position from gripped to in_bin

or on_conveyor (based on the gripper’s position) with probability

1;

• Inspect onion changes an onion’s quality from unknown to either

good or blemished by closely showing all sides of the onion to

the robot’s camera (only applicable in the inspection gripper

position);

• Move to conveyor, Move to inspection, Move to bin changes the

gripper’s position to conveyor, inspection, and the bin each with

probability 1, respectively.

Four general binary reward features are defined below and

take the value 0 in all states and actions except in those described

where they are valued 1.

(1) Release good onion in bin;

(2) Release good onion back on the conveyor belt;

(3) Release blemished onion in bin;

(4) Release blemished onion back on the conveyor belt.

The MDP assumes the subject is placing each type of onion either

in the bin or back on the conveyor. The learner is unaware of which
action is chosen for which onion type.

Trajectories are short (5-6 timesteps long) and terminate when

Sawyer performs a Release onion action, thereby completing a sin-

gle sort. Timesteps correspond to 2 secs of wall-clock time and

we assume the learner is able to detect the beginning and end of

trajectories (or an operator indicates them).

Our learner robot is equipped with a fixed RGB camera that

is observing the expert. Determining the subject’s complete state

is not straightforward: Consider a blemished onion as shown in

Fig. 3(𝑎). It appears identical to a good onion from one angle, but

from others has detectable dark spots. These appear to the learner

as a distribution of discrete observations: bright onion and dark



(𝑎)
(𝑏) (𝑐) (𝑑) (𝑒)

Figure 3: (𝑎) A blemished onion from two viewpoints. (𝑏) The onion sorting robot inspecting a bad onion in a fully controlled
environment. (𝑐,𝑑 ,𝑒) The same robot in a partially controlled environment sorting onions. Note the blue gripper and an indi-
vidual’s confounding blue shirt, occlusion due to a worker temporarily in front of camera, presence of other onions, and the
mirror which provides the indirect observations (see the simulation video at https://youtu.be/r6IGU21Rty8 for more details).

onion, with blemished onions producing relatively more dark onion

observations.

Additionally, confounding elements are present in the partially-

controlled trials. These include moving persons in the environment

that cause false positive observations or occlude the subject from

view, and other onions not being sorted (see Fig. 3(𝑐, 𝑑, 𝑒) and the

supplemental video). The observations are defined below with more

details in Appendix B in the supplementary material:

• Gripper blobs - The gripper is detected by running a color blob

finder on the RGB frames. Gripper positions produce distribu-

tions of color blobs which are classified into one of 20 discrete

observations each corresponding to an equal-sized region of the

camera’s f.o.v. The [ for these observations is based on the size

of the blob, with more mass given to the subject as the blob size

approaches the bounding box size of the gripper in pixels. The

leftover mass is attributed to a person walking behind the expert

wearing a shirt of the same color as the gripper.

• Bright or Dark onion - Onions are detected in the RGB images

using a color blob finder. The luminosity of the pixels constituting

the onion is then classified as either bright or dark based on the

proportion of dark pixels present. [ is set to 80% for subject if the

blob is proximal to a gripper blob, with the remainder going to

other onions and a foreground person. If no gripper blob is seen

nearby, we assign 60% mass to the other onions for small blobs or

a foreground person for large ones, with the remainder divided

between the subject (10%) and other confounding element (25%).

Notice that these observations do not unambiguously specify the

state and action of the expert. The [ values chosen represent our

uncertain estimate of the source of the detected blobs, illustrating

the difficulty of filtering out observations of confounding elements.

Experiment procedure We simulate the sorting robot with all

confounding elements removed and record (𝑖) the true state and
action in each timestep and (𝑖𝑖) all observations received. We use

these to find the 𝛼 hyperparameters, as well as provide a ground

truth trajectory for upper-bound purposes. Next, we repeat the

same sort but with a mirror installed and confounding elements

added, recording all observations. We produce the following data

sets:

• Maximum likelihood (ML) trajectories - given the observation

model and observations receivedwe choose themost likely expert

state and action at each timestep. This approximates common

practice and serves as a baseline.

• ML observations - given [ values as defined above, choose the

observations that are most likely caused by the subject and use

these observations only in the “controlled environment”. This

demonstrates the accuracy of [ distributions.

• Partially-controlled model - we define E manually by reviewing

the recorded demonstration and observation stream and listing

all objects other than the subject that cause observations. We

use uninformative hyperparameters 𝛼 for all confounding ele-

ments, and use the observations in our partially controlled model.

[ is either Plausible (set to values described previously) or is

Uniform.

We utilize MaxCausalEntIRL to find a reward function for data

sets with known states and actions. For all others, we use Hidden-

DataEM and report metrics after Algorithm 1 has converged. We

show the ILE produced by using the learned reward function to

complete the given MDP versus using the true reward function for

each data source. There were three confounding elements, which

are evident in Fig. 3(𝑐, 𝑑).

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 I

L
E

Number of Trajectories

True Trajectories
ML Trajectories

ML Obs

Uniform η
Plausible η

Figure 4: Average ILE in the onion sorting experiment as the
number of trajectories increases. Each data point is from
100+ runs. Error bars are 95% confidence intervals on the
mean.

https://youtu.be/r6IGU21Rty8


As Fig. 4 reveals, two trajectories are needed for True Trajec-
tories to achieve zero error due to the need to see at least one

good and one blemished onion being sorted. ML trajectories is
mostly flat because observations from the confounding elements

prevent the likelihood estimation from yielding any reasonable

trajectories.MLObs shows sensitivity to the trajectories due to the
variance in observations produced by each trajectory. Plausible
[ achieves very low error with 4 or more trajectories, while all

other techniques fail to reduce error as trajectories increase. As a

verification, on applying these techniques to observations produced

in the fully controlled scenario, all methods achieve zero error with

just two trajectories. Thus, HiddenDataEM [7] when integrated

with the hierarchical Bayesian process and a plausible distribution

over the sources of the learner’s observations exhibits IRL under

much uncertainty.

6 RELATEDWORK
Bogert and Doshi [4, 6] introduce the challenges of occlusion that

manifest in real-world applications of IRL to robotics. This exten-

sion of the original problem of IRL – which assumes full and perfect

observability of the trajectories – is formally defined in a recent

survey of the methods and progress in IRL [2]. An initial method [4]

extended MaxEnt [30] to settings involving occlusion of portions of

the trajectory by limiting the constraints to the observed portions

only. Subsequently, the EM based approach reviewed in Section 2

was introduced, which forms an expectation over the missing data

to allow the use of the Lagrangian gradient. However, this method

suffers from a compute intensive expectation step when the oc-

cluded portions of the trajectories are long and contiguous. This

limitation is addressed by a follow-up paper [5], which shows how

blocked Gibbs sampling can be utilized to speed up the forward-

backward message passing in the expectation step to allow scaling

under occlusion to multiple experts. However, none of these gener-

alizations to occlusion integrate indirect observations in the model

as we do in this paper, which represents a different approach to

manage occlusion.

On the other hand, techniques like BIRL [27], D-REX [8], and the

more recent SSRR [9] target noisy trajectories due to the expert’s

failures during task performance. The first is based on the premise

that noisy execution may cause the expert to sometimes exhibit

off-policy actions. A latent variable characterizing the reliability of

the action is introduced and an EM schema in the framework of

BIRL manages this noise. The second technique (D-REX) automati-

cally ranks demonstrated trajectories based on their total rewards

using the Luce-Shepard rule while SSRR uses Adversarial IRL and

assumes that the demonstrator is suboptimal and that pairwise

preferences over trajectories are additionally needed for IRL. How-

ever, none of these methods introduce an observation model for

the learner or account for partially occluded trajectories. As the

expert in our setting fully and perfectly observes its state while the

learner experiences noise due to imperfect sensors, IRL methods

that model the expert as a partially observable MDP (POMDP) [11]

are not related.

Kitani et. al. [16] introduce IRL with a single observation per

timestep of the subject agent. However, the observation is mod-

eled as caused by the subject’s state only and no mechanism for

exploiting the learned policy to improve the state distribution is

developed. Choi and Kim [10] generalized Bayesian IRL [20] to a

hierarchical model by introducing a prior over the temperature pa-

rameter that determines the randomness of the softmax distribution

used in Bayesian IRL, and a hyperprior over the reward function

prior. Maximum a-posteriori inference for Bayesian IRL [12] is then

extended to the hierarchical version with a demonstration on the

Gridworld and taxi problems [30]. A different hierarchical Bayesian

model was also introduced by Dimitrakakis and Rothkopf [14] to

generalize Bayesian IRL to learning multiple reward functions for

multiple demonstrations. It involves a hyperprior on a joint reward-

policy distribution for each of the demonstrated tasks. Posterior

distributions are obtained using Metropolis-Hastings based sam-

pling, which is evaluated on simple randomMDPs. While these two

methods involve the use of hierarchical models, these are relatively

shallow compared to the final model we utilize here (Fig. 1(right))

and are not immediately generalizable to the challenges of noisy

observations.

7 CONCLUDING REMARKS
We relax the strong assumption pervading IRL that the expert’s tra-

jectories are perfectly known to the learner. We introduce a novel

hierarchical Bayesian process to model noisy observations whose

inference is integrated into a previous IRL method that generalizes

the classical maximum entropy technique. As demonstrated in our

experiments involving a robotic domain, we successfully generalize

IRL to realistic environments where confounding elements intro-

duce noisy observations. The method is shown to be resilient to

error in the source distribution [. Future work will explore the tech-

nique’s sensitivity to [, allow this distribution to be learned from

data, and extend the technique to uncontrolled scenarios where the

set of confounding elements is unknown.
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A APPENDIX: ALGORITHM
Our main algorithm Hierarchical Bayes Inference is shown

in Algorithm 1. The initialization procedure, not shown, involves

finding an initial non-zero probability trajectory and sampling

repeatedly to reduce the impact of this initial state on the final

result.

Here, 𝑐 is a small constant, 𝜎 is the number of desired samples,

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡_𝑚𝑒𝑎𝑛() computes the mean distribution for a Dirichlet

with the given hyperparameters, and the 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥𝑃𝑜𝑙𝑖𝑐𝑦 (𝜽 ) uti-
lized in line 1 is defined as follows:

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥𝑃𝑜𝑙𝑖𝑐𝑦 (𝜽 ) ≜ 𝑃𝑟 (𝑎 |𝑠) = 𝑒 (𝑄
𝑠𝑜𝑓 𝑡 (𝑠,𝑎;𝜽 )−𝑉 𝑠𝑜𝑓 𝑡 (𝑠 ;𝜽 )) ∀ 𝑠, 𝑎

where 𝑄𝑠𝑜 𝑓 𝑡 (𝑠𝑡 , 𝑎𝑡 ;𝜽 ) = 𝐸𝑠𝑡+1

[
𝑉 𝑠𝑜 𝑓 𝑡 (𝑠𝑡+1;𝜽 ) |𝑠𝑡 , 𝑎𝑡

]
and

𝑉 𝑠𝑜 𝑓 𝑡 (𝑠𝑡 ;𝜽 ) = softmax𝑎𝑡

[
𝑄𝑠𝑜 𝑓 𝑡 (𝑠𝑡 , 𝑎𝑡 ) + 𝜽𝑇𝜙 (𝑠𝑡 , 𝑎𝑡 )

]
.

Steps 12, 14, and 16 of Algorithm 1 involve sampling using

Metropolis-within-Gibbs [24] and performed using Algorithm 2.



Algorithm 1: Hierarchical Bayes Inference
Input :O, 𝛼0, 𝜽
Result: 𝑃𝑟 (𝑋 |𝝎,𝜼)

1 𝑃𝑟 (𝑎 |𝑠) ← 𝑆𝑜𝑓 𝑡𝑀𝑎𝑥𝑃𝑜𝑙𝑖𝑐𝑦 (𝜽 ) ∀𝑠, 𝑎
2 𝑂𝑠,𝑎 ← 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡_𝑚𝑒𝑎𝑛 (𝛼0

𝑠,𝑎) ∀ 𝑠, 𝑎
3 𝑂𝑍 ← 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡_𝑚𝑒𝑎𝑛 (𝛼0

𝑍
) ∀ 𝑍/1

4 𝑖 ← 0

5 while Not all𝑂 converged do
6 𝑖 ← 𝑖 + 1
7 for 𝝎,𝜼 ∈ O do
8 Initialize { 𝑍 0

𝑡,𝑛 : 𝑡 = 1, ...𝑇 , 𝑛 = 1...𝑁 𝑡
}, { 𝑠0𝑡 : 𝑡 = 1, ...𝑇 }, {

𝑎0𝑡 : 𝑡 = 1, ...𝑇 }

9 for 𝑗 ← 1 to 𝜎 do
10 for 𝑡 ← 1 to𝑇 do
11 for 𝑛 ← 1 to 𝑁 𝑡 do
12 Sample 𝑍

( 𝑗 )
𝑡,𝑛 ∼

𝑃𝑟 (𝑍𝑡,𝑛 |𝑍 ( 𝑗−1)𝑡,𝑛 , [𝑡,𝑛, 𝜔𝑡,𝑛,𝑂, 𝑠
( 𝑗−1)
𝑡 , 𝑎

( 𝑗−1)
𝑡 )

13 end
14 Sample 𝑠

( 𝑗 )
𝑡 ∼

𝑃𝑟 (𝑠𝑡 |𝑠 ( 𝑗−1)𝑡 , 𝑎
( 𝑗−1)
𝑡 , 𝑠

( 𝑗−1)
𝑡+1 , 𝑠

( 𝑗−1)
𝑡−1 , 𝑎

( 𝑗−1)
𝑡−1 ,Ω𝑡 ,

15 𝑍
( 𝑗 )
𝑡 ,𝑂)

16 Sample 𝑎
( 𝑗 )
𝑡 ∼ 𝑃𝑟 (𝑎𝑡 |𝑠 ( 𝑗 )𝑡 , 𝑠

( 𝑗 )
𝑡+1,Ω𝑡 , 𝑍

( 𝑗 )
𝑡 ,𝑂)

17 end
18 end
19 Estimate 𝑃𝑟 (𝑍𝑡,𝑛 |𝝎,𝜼) from 𝑍

(1...𝜎 )
𝑡,𝑛 ∀ 𝑍, 𝑡, 𝑁 𝑡

20 Estimate 𝑃𝑟 (𝑋 |𝝎,𝜼) from 𝑠 (1...𝜎 ) , 𝑎 (1...𝜎 ) ∀𝑋
21 end

22 ¤𝛼𝑠,𝑎 ←
∑

⟨𝝎,𝜼⟩∈O

∑
𝑡∈𝝎

|𝝎𝑡 |∑
𝑛=1

𝑃𝑟 (𝑍𝑡,𝑛 =

1 |𝝎,𝜼) ∑
𝑋 :𝑠𝑡=𝑠,𝑎𝑡=𝑎

𝑃𝑟 (𝑋 |𝝎,𝜼) ∀ 𝑠, 𝑎

23 ¤𝛼𝑍 ←
∑

⟨𝝎,𝜼⟩∈O

∑
𝑡∈𝝎

|𝝎𝑡 |∑
𝑛=1

𝑃𝑟 (𝑍𝑡,𝑛 = 𝑍 |𝝎,𝜼) ∀ 𝑍/1

24 𝛼𝑖 ← 𝑐 ¤𝛼 + (1 − 𝑐)𝛼𝑖−1 ∀ 𝛼
25 𝑂𝑠,𝑎 ← 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡_𝑚𝑒𝑎𝑛 (𝛼𝑖𝑠,𝑎) ∀ 𝑠, 𝑎
26 𝑂𝑍 ← 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡_𝑚𝑒𝑎𝑛 (𝛼𝑖

𝑍
) ∀ 𝑍/1

27 end

Algorithm 2: Sample

1 Given 𝑦𝜏−1, Z = all other current node values

2 Simulate 𝑦 ∼ 𝑈 (𝑌 )

3 Take 𝑦𝜏 =

{
𝑦 with probability 𝑝

𝑦𝜏−1 with probability 1 − 𝑝

4 Where: 𝑝 = min

(
1,

𝑃𝑟 (𝑦 | Z )
𝑃𝑟 (𝑦𝜏−1 | Z )

)

The sampling probabilities of individual nodes (𝑦 in Algorithm 2)

are defined as:

𝑃𝑟 (𝑍𝑡,𝑛 |[𝑡,𝑛, 𝜔𝑡,𝑛,𝑂, 𝑠𝑡 , 𝑎𝑡 ) =
{
[𝑡,𝑛 (𝑍𝑡,𝑛)𝑂𝑠𝑡 ,𝑎𝑡 (𝜔𝑡,𝑛), if 𝑍𝑡,𝑛 = 1

[𝑡,𝑛 (𝑍𝑡,𝑛)𝑂𝑍𝑡,𝑛 (𝜔𝑡,𝑛), otherwise

𝑃𝑟 (𝑠𝑡 |𝑎𝑡 , 𝑠𝑡+1, 𝑠𝑡−1, 𝑎𝑡−1,Ω𝑡 , 𝑍𝑡 ,𝑂) = 𝑃𝑟 (𝑎𝑡 |𝑠𝑡 ) 𝑃𝑟 (𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1)

× 𝑃𝑟 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )
∏

𝑛:𝑍𝑡,𝑛=1
𝑂𝑠𝑡 ,𝑎𝑡 (𝜔𝑡,𝑛) and

𝑃𝑟 (𝑎𝑡 |𝑠𝑡 , 𝑠𝑡+1,Ω𝑡 , 𝑍𝑡 ,𝑂) = 𝑃𝑟 (𝑎𝑡 |𝑠𝑡 ) 𝑃𝑟 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 )

×
∏

𝑛:𝑍𝑡,𝑛=1
𝑂𝑠𝑡 ,𝑎𝑡 (𝜔𝑡,𝑛)

Implementation note: When a large number of observations are

present in a timestep the multiplication of the 𝑍 nodes in 𝑃𝑟 (𝑠𝑡 |·)
and 𝑃𝑟 (𝑎𝑡 |·) above will not be numerically stable. In this situation,

we modify the computation of the ratio 𝑃𝑟 (𝑦)/𝑃𝑟 (𝑦𝜏−1) to use

a sum of log probabilities, ie. for 𝑠𝑡 : 𝑒𝑥𝑝 (· · · +
(
𝑙𝑜𝑔 𝑂𝑠𝑡 ,𝑎𝑡 (𝜔𝑡,𝑛)−

𝑙𝑜𝑔 𝑂𝑠𝜏−1𝑡 ,𝑎𝑡
(𝜔𝑡,𝑛)

)
+ . . . ) ∀ 𝑛 : 𝑍𝑡,𝑛 = 1

We give the complete definitions of the MDPs for the two do-

mains, the observation variables, [ distributions and 𝛼 priors, and

the input trajectories in Appendix B, which is available in the

supplementary material. We also show a video of our simulation of

the noisy onion sorting domain at https://youtu.be/r6IGU21Rty8.
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