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» Experimental Results

We introduce MVSA-Net, an approach that harnesses multiple We evaluate the prediction accuracy of MVSA-Net and the
viewpoints and gating networks for state-action recognition. A ST TTTTETL T 2w 8 baselines under varied conditions using 5-fold cross-validation.
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deployable robotic trajectory systems within the LfO context.
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Parameters and Actions
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—/ optimal state-action recognition in MVSA-Net. Here is an example:
W

Using MVSA-Net's predicted trajectories as input for an inverse
RL algorithm (MAP-BIRL) resulted in a learned behavior
accuracy (LBA) of 97.9%, which is significantly higher than the
83.3% achieved using a single-view SA-Net. MVSA-Net's multi-
view fusion enhances LfO performance, adeptly handling
occlusions and sensor noise for real-world applications.
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Passing frames through
convolutional layers

feature vector 1 | | feature vector 2 > Contributions
MVSA-Net processes synchronized RGB-D frames using deep | (4096 x 1) (4096 x 1) « Achieves a higher prediction accuracy than baselines on
convolutional and recurrent networks, enhanced by YOLO-v5 Y two diverse LfO tasks
fpr having precise state-action prgdictions. These stre_ams are ll/  Demonstrates robustness in varied lighting conditions and
first processed through convolutional layers, extracting vital [ Classi;ierl ] [Gatin Network} [ Classif‘irer 2] malfunctioning sensors
spatial details. Importantly, the spatial features extracted are 9 »  Significantly improves the LfO trajectory performance
shared between the state and action recognition networks, l i l
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ensuring a consistent and comprehensive understanding of the [0_63 0_37}
scene. For state recognition, the system analyzes the latest

frames, flattening the data and directing it to a dedicated state y y
classifier. Concurrently, for action recognition, MVSA-Net
captures a series of consecutive frames, leveraging Time
Distributed convolutions and GRU layers to discern temporal
dynamics [1]. A pivotal component, the gating network,
integrates insights from all available views [2]. The Ilast
component of MVSA-Net is a decision module that takes the
weighted predictions for all classifiers and, considering specific
conditions, provides the predicted state and action.
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