
Appendix: Online Inverse Reinforcement Learning
with Learned Observation Model

Saurabh Arora & Prashant Doshi
THINC Lab, Dept. of Computer Science

University of Georgia, Athens, GA
United States of America

{sa08751, pdoshi}@uga.edu

Bikramjit Banerjee
School of CSCE

Univ. Southern Mississippi, Hattiesburg, MS
United States of America

Bikramjit.Banerjee@usm.edu

Contents
Appendix A . 2

Open-Source Code Links . 2
Algorithm RIMEO . 2

Appendix B . 3
Proof of Lemma 1 . 3
Proof of Lemma 2 . 3
Proof of Theorem 1 . 5

Appendix C (Onion Sorting) . 6
Reward Features . 6
Observation Features . 6

Appendix D (Perimeter Patrol) . 7
Reward Features . 7
Observation Features . 7

References . 8

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.
1

Appendix A

Open-Source Code Links

The MDP definitions for our two experimental domains are available at: https://github.com/
s-arora-1987/sorting_patrol_MDP_irl.

RIMEO implementation is available at: https://github.com/s-arora-1987/irld.

Finally, the Gazebo simulation with Sawyer is available at: https://github.com/thinclab/
sawyer_irl_project.

Algorithm 1 RIMEO

1: WS (window size) ← 5; max-restarts ← 5; i ← 1; Ξd,1:i−1 ← ∅; φ̂1:i−1
θi−1,k ← 0; [θ0]k ∼

uniform(0, 1);P ∗1:i−1(ψ) ∼ uniform(0, 1)
2: while std dev z > ρ do
3: P ∗1:i ← P ∗1:i−1

4: Compute Ôo using scores for Ξd,i from Eq. 8.
5: repeat
6: Compute L′,∇L′ using P ∗1:i(ψ) and Ξd,i.
7: P ∗1:i(ψ)← update-step-LBFGS(L′,∇L′)
8: until ||∇L′||1 ≈ 0
9: Update learned observation model using P ∗1:i in Eq. 7.

10: repeat
11: compute φ̂iθi and φ̂1:i

θi,k using Eqs. 10, 11.
12: |Ξd,1:i| ← |Ξd,1:i−1|+ |Ξd,i|
13: θ0 ← θi−1, t← 1
14: repeat
15: Compute π∗E,(t−1) using θ(t−1) and EΞ[φk] using trajectories sampled from π∗E,(t−1).

16: z(t−1) ← φ̂1:i
θi − EΞ[φ] {gradient}

17: θt,k ←
θ(t−1),k exp(−ηz(t−1),k)∑K

k=1 θ(t−1),k exp(−ηz(t−1),k)

18: t← t+ 1
19: until |zt| ≤ εr/(1− γ)
20: j ← j + 1
21: until j > max-restarts
22: Compute π̂i using learned reward θi ← θt.
23: i← i+ 1 {next session}
24: zi ← zt; mov-window-z← [zi−WS , . . . , zi]
25: std dev z← std-dev(mov-window-z)

2

https://github.com/s-arora-1987/sorting_patrol_MDP_irl
https://github.com/s-arora-1987/sorting_patrol_MDP_irl
https://github.com/s-arora-1987/irld
https://github.com/thinclab/sawyer_irl_project
https://github.com/thinclab/sawyer_irl_project

Appendix B

Proof of Lemma 1

LEMMA 1 (MONOTONICITY). The demonstration likelihood increases monotonically with each new
session, LL(θi|Ξd,i, α1:i−1,θ

i−1)− LL(θi−1|Ξd,i−1, α1:i−2,θ
i−2) > 0, when |Ξd,1:i−1| � |Ξd,i|.

Proof: Log-likelihood of demonstrated behavior can be split as
LL(θi|Ξd,i, α1:i−1,θ

i−1)

=
∑

ξ′∈Ξd,1:i

P̃ (ξ′) logP (ξ′;θ)

=
∑

ξ′∈Ξd,1:i

P̃ (ξ′)
∑
ξ∈Ξ

P (ξ|ξ′;θi) logP (ξ, ξ′;θ) + (−
∑

ξ′∈Ξd,1:i

P̃ (ξ)
∑
ξ∈Ξ

P (ξ|ξ′;θi) logP (ξ|ξ′;θ))

= Q(Ξd,1:i,θ
i) + C(Ξd,1:i,θ

i)

Here P̃ is distribution of trajectories in observed training data (
∑

ξ′∈Ξd,1:i

P̃ (ξ′)[·] and 1
|Ξd,1:i|

∑
ξ′∈Ξd,1:i

[·]

can be used interchangeably). The EM method maximizes the log-likelihood by maximizing only
Q value over θ; and θ = θi maximizes Q(Ξd,1:i,θ

i) ([1]). After all the EM iterations for current
session i, the final Q value is Q(Ξd,1:i,θ

i). Therefore, the difference in the likelihoods achieved
by weights learned in consecutive sessions can be expressed as a difference in Q values. Note that
Robust IRL learns reward weights by inferring the maximum entropy distribution P (ξ, ξ′;θ) =
exp(

∑
k θkfk(ξ))

ΩΞ
θ

(Equation 15 in [2]), where ΩΞ
θ =

∑
ξ∈Ξ exp(

∑
k θkfk(ξ)). Expand Q value as

Q(Ξd,1:i,θ
i) =

∑
ξ′∈Ξd,1:i

P̃ (ξ′)
∑
ξ∈ξ

P (ξ|ξ′;θi) log

(
exp(

∑
k θ

i
kfk(ξ))

ΩΞ
θi

)
=
∑
k θ

i
k ·

∑
ξ′∈Ξd,1:i

P̃ (ξ′)
∑
ξ∈Ξ

P (ξ| ξ′;θi)fk(ξ)− log ΩΞ
θi =

∑
k θ

i
k · φ̂1:i

θi,k − log ΩΞ
θi .

Therefore the improvement in log likelihood over session i is
LL(θi|Ξd,i, α1:i−1,θ

i−1)− LL(θi−1|Ξd,i−1, α1:i−2,θ
i−2)

= Q(Ξd,1:i,θ
i)−Q(Ξd,1:i−1,θ

i−1)

=
∑
k

θikφ̂
1:i
θi,k − log ΩΞ

θi −
∑
k

θi−1
k φ̂1:i−1

θi−1,k + log ΩΞ
θi−1

= log
ΩΞ

θi−1

ΩΞ
θi

+
∑
k

(
θik

|Ξd,1:i−1|
|Ξd,i|+ |Ξd,1:i−1|

− θi−1
k

)
φ̂1:i−1
θi−1,k +

∑
k

(
θik

1

|Ξd,i|+ |Ξd,1:i−1|
φ̂iθi,k

)
(substitute φ̂1:i

θi,k using Eq. 11 from main paper and simplifying)

The final expression is minimized only for θi = θi−1 when |Ξd,1:i−1| � |Ξd,i|, i.e., when a
significant amount of training data has been accumulated. The expression is also concave in parameter
θi. Therefore, LL(θi|Ξd,i, α1:i−1,θ

i−1) − LL(θi−1|Ξd,i−1, α1:i−2,θ
i−2) ≥ 0 for consecutive

sessions thereafter.

Proof of Lemma 2

LEMMA 2 (CONSTRAINT BOUND). Under the assumptions stated in Sec. 5.2 (main paper), the
following holds with probability at least max(0, 1− δr):∣∣∣(1− γ)

(
EΞ[φk]− φ̂1:i

θi,k

)∣∣∣
1
6 εr, k ∈ {1, 2 . . .K}

where L is the maximum length of any trajectory, δr = δ + δs + δo and εr = ε+ εs + L|Ψ|εo, and
ε, δ are as defined in Theorem 1 in [3].

Proof: Suppose the true (unknown) observation model ∀o, g is O∗o,g . Solving the NLP with the true
observation model gives the true P (ψ), since the constraint below is satisfied.∏

ψo,g=1

P (ψ)
∏

ψo,g=0

(1− P (ψ)) = O∗o,g (1)

3

Using these true P (ψ) instead of P ∗(ψ), we can generate a version of Eq. 11 (main paper):

φ1:i
θ,k =

1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

ηP (ξ′|ξ)P (ξ;θ)fk(ξ)

From the accumulated sessions, we get estimates of O∗o,g, call it Ôo,g (Eq. 8 in the main paper).
We assume that this estimate satisfies Hoeffding bounds for the observed state-action pairs, viz.,
P (|O∗o,g− Ôo,g| ≤ εo) ≥ 1− δo

K , where δo = 2K|Ψ| exp(−2ε2ono), no being the number of samples
used to construct Ôo,g . The key issue is that this estimate may not be available yet for the 〈s, a〉o pairs
that were not observed. Regardless, we assume that all features in Ψ are observed in the very first
session. Hence, after solving the NLP, we obtain Ôo,g for all o, g, using the P ∗(ψ) from observed
〈s, a〉os and

Ôo,g =
∏

ψo,g=1

P ∗(ψ)
∏

ψo,g=0

(1− P ∗(ψ)) (2)

Under the assumptions above, with probability ≥ 1− δo, max〈s,a〉o |O
∗
o,g − Ôo,g| ≤ εo, but only for

the observed 〈s, a〉o. Since maxany ψ |P (ψ)−P ∗(ψ)| ≤ 1, in turn this yields maxany〈s,a〉o |O
∗
o,g −

Ôo,g| ≤ |Ψ|εo. Consequently, if the length of trajectories is bounded by L, then with probability
≥ 1− δo

K we have ∀k

|φ1:i
θi,k − φ̂

1:i
θi,k| =

1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

fk(ξ)ηP (ξ;θ)|(P (ξ′|ξ)− P ∗(ξ′|ξ))|

=
1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

fk(ξ)ηP (ξ;θ)|(
∏
o,g

O∗o,g −
∏
o,g

Ôo,g)|

≤ 1

|Ξd,1:i|
∑

ξ′∈Ξd,1:i

∑
ξ∈Ξ

fk(ξ)ηP (ξ;θ)L max
any o

|O∗o,g − Ôo,g|

≤ L|Ψ|εo/(1− γ)

The rest of the proof follows similar steps as in [3]. We define the events Ak, Bl, Cj as:

Ak : (1− γ)
∣∣EΞ[φk] −φ̂1:i

k

∣∣ > ε, k ∈ {1, 2 . . .K}.

Applying Hoeffding’s inequality for Ak, we get P (Ak) ≤ 2 exp(−2ε2|Ξd,1:i|) ≤ δ
K for any k ∈

{1, 2 . . .K}, and for the same ε, δ as in Theorem 1. Similarly, for noisy observation, given εs as the
bound on the error in sampling based approximation of φ̂1:i

l as φ1:i
θi,l, and ns samples, let us define

the event

Bl : (1− γ)
∣∣∣φ̂1:i
l − φ1:i

θi,l

∣∣∣ > εs, l ∈ {1, 2 . . .K}.

Similar to procedure for P (Ak), applying Hoeffding bound gives us P (Bl) < δs
K , δs =

2K exp(−2ε2
sns). Finally,

Cj : (1 − γ)
∣∣∣φ1:i

θi,j − φ̂
1:i
θi,j

∣∣∣ > L|Ψ|εo, j ∈ {1, 2 . . .K}. Then following the argument above,

P (Cj) <
δo
K .

Applying Fretchets inequality over the sets A, B, and C of events gives us:

P ((∪kAk) ∨ (∪lBl) ∨ (∪jCj)) < min(1,
∑K
k=1

δ
K +

∑K
l=1

δs
K +

∑K
j=1

δo
K) = min(1, δ+δs+δo).

That is, P (∃k, l, js.t.Ak ∨Bl ∨ Cj) < min(1, δ + δs + δo). Taking complement,
P
(
∀k, l, j, Ak ∧Bl ∧ Cj

)
≥ max(0, 1 − δ − δs − δo). But ∀k, l, j, Ak ∧ Bl ∧ Cj implies that

∀k:

(1− γ)(
∣∣∣EΞ[φk]− φ̂1:i

k

∣∣∣+
∣∣∣φ̂1:i
k − φ1:i

θi,k

∣∣∣+
∣∣∣φ1:i

θi,k − φ̂
1:i
θi,k

∣∣∣) ≤ ε+ εs + L|Ψ|εo.

Hence P
(
∀k, (1− γ)(

∣∣∣EΞ[φk]− φ̂1:i
k

∣∣∣+
∣∣∣φ̂1:i
k − φ1:i

θi,k

∣∣∣+
∣∣∣φ1:i

θi,k − φ̂
1:i
θi,k

∣∣∣) ≤ ε+ εs + L|Ψ|εo
)
≥

max(0, 1− δ − δs − δo).

4

Using
∣∣∣EΞ[φk]− φ̂1:i

θi,k

∣∣∣ ≤ ∣∣EΞ[φk] − φ̂1:i
k

∣∣ +
∣∣φ̂1:i
k − φ1:i

θi,k

∣∣ +
∣∣φ1:i

θi,k − φ̂
1:i
θi,k

∣∣, δr = δ + δs + δo,
and εr = ε+ εs + L|Ψ|εo, we get:

P

(
∀k, (1− γ)(

∣∣∣EΞ[φk]− φ̂1:i
θi,k

∣∣∣) ≤ εr) ≥ max(0, 1− δr).

Proof of Theorem 1

THEOREM 1 (CONFIDENCE). Let εr, δr be as defined in Lemma 2, and θi be the solution of session
i for RI2RL-MEOM. Then

LL(θE |Ξd,1:i)− LL(θi|Ξd,i, α1:i−1,θ
i−1) ≤ 2Kεr

(1− γ)
,

with confidence at least max(0, 1− δr), where θE are the true weights of the expert.

Proof: Each session of RI2RL-MEOM solves a maximum entropy estimation problem for Robust
IRL. By allowing a relaxation in the constraints for a session, we get

max
∆

(
−
∑
ξ′∈Ξd,1:i,ξ∈Ξ P (ξ′, ξ) logP (ξ′, ξ)

)
subject to

∑
ξ′∈Ξd,1:i,ξ∈Ξ P (ξ′, ξ) = 1∣∣∣EΞ[φk]− φ̂1:i

θi,k

∣∣∣ ≤ βk ∀k
(3)

where
EΞ[φk] ,

∑
ξ∈Ξ,ξ′∈Ξd,1:i

P (ξ, ξ′) fk(ξ), k = 1 . . .K (4)

Here β ∈ RK is a vector of upper bounds on the differences between feature expectations.
Following the proofs by Dudik et al. [4], the above relaxed constraints problem is the same
as minθ(−

∑
ξ∈Ξd,1:i

P̃ (ξ) log P (ξ|θ) +
∑
k βk|θk|) = minθ(−LL(θ| Ξd,i, α1:i−1, θ

i−1) +∑
k βk|θk|) = minθ NLLβ(θ|Ξd,i, α1:i−1 ,θ

i−1) (say). Here NLL = negative log likelihood.

The proof here is partially inspired from Corollary 1 in [4]. Let βk = βc = ε/(1 − γ) for all k ∈
{1 . . .K}, where βc is a constant because ε is a fixed input. For normalized exponentiated gradient
descent used in reward-learning part of RI2RL session,

∑K
1 |θk| = 1. Then, NLLβ(θ|Ξd,i, α1:i−1,

θi−1) = (−LL(θ|Ξd,i, α1:i−1, θ
i−1) +βc

∑k
1 |θk|) = (−LL(θ|Ξd,i, α1:i−1,θ

i−1) +βc). Assume
that θi minimizes NLLβ(θ| Ξd,i, α1:i−1,θ

i−1), a solution maximizing LL(θ|Ξd,i, α1:i−1,θ
i−1).

Since EΞ[φk] ∈
[
0, 1

(1−γ)

]
, we get (1 − γ)EΞ[φk] ∈ [0, 1]. Using the result from the previous

Lemma, the probability that
∣∣∣(1− γ)EΞ[φk]− (1− γ)φ̂1:i

θi,k

∣∣∣ ≤ εr ∀k ∈ {1 . . .K} is at least
max(0, 1− δr). To keep the reward value bounded, IRL assumes ||θ∗||1 ≤ 1 for all θ∗. Using the
assumption and Theorem 1 in [4], we get the following error bound:

For every θ∗ ∈ [0, 1]K , NLLβ(θi|Ξd,i, α1:i−1,θ
i−1) − NLLβ(θ∗|Ξd,i, α1:i−1,θ

i−1) ≤
2
∑K

1 βc = 2K βc = 2Kεr
(1−γ) , with probability at least max(0, 1− δr).

We modify the bound in the form of positive log-likelihood of expert’s policy, by using the relation
NLLβ(θ∗|Ξd,1:i) = (−LL(θ∗| Ξd,1:i) +

∑K
1 βk|θk|) and θ∗ = θE .

Then, with Ξd,1:i as input, with probability at least max(0, 1− δr),

NLLβ(θi|Ξd,i, α1:i−1,θ
i−1)−NLLβ(θE |Ξd,1:i)

= LL(θE |Ξd,1:i)− LL(θi|Ξd,i, α1:i−1,θ
i−1) ≤ 2Kεr

(1− γ)
.

5

Appendix C (Features of Onion Sorting)

Reward Features

The 11 reward features φk(s, a) are:

• CreateList(s,a): Roll all onions and create a list of predictions (blemished/unblemished/unknown);
• ClaimNewOnion(s,a): considers a new onion on table;
• PickUnknown(s,a): is 1 when onion with unknown prediction is picked;
• AvoidNoOp(s,a): the action a changes the state;
• InspectNewOnion(s,a): is 1 when an onion is inspected for the first time and a prediction is made

for it;
• GoodOnTable(s,a): considered onion is unblemished and is placed on the table;
• BlemishedNotOnTable(s,a): onion is blemished and is not placed on the table;
• GoodNotInBin(s,a): onion is unblemished and is not placed in the bin;
• BlemishedInBin(s,a): onion is blemished and is placed in the bin;
• PickBlemished(s,a): onion with prediction blemished is picked;
• EmptyList(s,a): finish sorting bad onions out of the conveyor.

Observation Features

The 8 observation features, ψj , j = 1, . . . , 8, are listed below. Each indicator ψo,gj takes the value 1
iff the predicate value is the same for both 〈s, a〉g and 〈s, a〉o.

• BlemishedOnion: considered onion is blemished;
• MoveWithHand: onion moves with the hand;
• StartFromConv: onion was on the table before action;
• LeavingAtEye: onion leaves atEye location;
• OnionToBin: onion moves to the bin;
• HandToBin: hand moves to the bin;
• OnionToTable: onion moves to the table;
• HandToTable: hand moves to the table;

6

Appendix D (Features of Perimeter Patrol)

Reward Features

The 6 reward features φk(s, a), in the context of the above figure, are:

• HasMoved(s, a): true iff a in s makes the patroller change its grid cell;
• Turn1(s, a): true iff a in s makes the patroller turn (left or right) in the orange part of the hallway;
• Turn2(s, a): true iff a in s makes the patroller turn in the yellow part of hallway;
• Turn3(s, a): true iff a in s makes the patroller turn in the green part of hallway;
• Turn4(s, a): true iff a in s makes the patroller turn in the blue part of hallway;
• Turn5(s, a): true iff a in s makes the patroller turn in the magenta part of hallway.

A weight vector θE for these features such as 〈.57, 0, 0, 0, .43, 0〉 makes the patroller constantly
execute a cyclic trajectory.

Observation Features

The observation feature set Ψ contains the following 4 binary predicates:

• MoveForward: patroller is moving forward;
• TurnLeft: patroller is turning left;
• y is 0: patroller location has y = 0;
• TurnRight: patroller is turning right;

Average of pairwise feature correlation from the patroller’s demonstration is −0.14 (p-value 0.06),
indicating that the features are reasonably independent.

7

References
[1] S. Wang and D. Schuurmans Yunxin Zhao. The Latent Maximum Entropy Principle. ACM

Transactions on Knowledge Discovery from Data, 6(8), 2012.

[2] S. Shahryari and P. Doshi. Inverse Reinforcement Learning Under Noisy Observations. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’17, Richland, SC, 2017. International Foundation for Autonomous Agents and Multiagent
Systems.

[3] S. Arora, P. Doshi, and B. Banerjee. I2RL: Online inverse reinforcement learning under occlusion.
Autonomous Agents and Multi-Agent Systems, 35(1):4, Nov 2020. ISSN 1573-7454.

[4] M. Dudı́k, S. J. Phillips, and R. E. Schapire. Performance guarantees for regularized maximum
entropy density estimation. In J. Shawe-Taylor and Y. Singer, editors, Learning Theory, pages
472–486, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-27819-1.

8

	Appendix A
	Open-Source Code Links
	Algorithm RIMEO

	Appendix B
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	Appendix C (Onion Sorting)
	Reward Features
	Observation Features

	Appendix D (Perimeter Patrol)
	Reward Features
	Observation Features

	References

