
Recurrent Sum-Product-Max Networks for Multi-Agent Decision
Making: A Perspective

Hannah Tawashy
THINC Lab, School of Computing

University of Georgia
Athens, USA
hmtx@uga.edu

Prashant Doshi
THINC Lab, School of Computing

University of Georgia
Athens, USA

pdoshi@uga.edu

ABSTRACT
This position paper presents a novel use of recurrent sum-product-
max networks (RSPMN) for modeling multi-agent decision mak-
ing. RSPMNs are an extension of SPNs, a model that can perform
tractable exact inference for sequential decision making. The struc-
ture of RSPMNs is learned using a data driven approach. We outline
three methods utilizing RSPMNs, ranging from centralized to de-
centralized multi-agent decision making. In a fully centralized ap-
proach, the RSPMN models the joint decision making of all agents.
With centralized learning and decentralized decision making, the
RSPMN is decomposed into a sub-RSPMN for each agent while still
allowing for centralized coordination. In a fully decentralized ap-
proach, each agent has its own RSPMN and learns representations
of other agents’ behaviors. The agent would then use this represen-
tation as a part of its own model to make decisions. Limitations of
implementing RSPMNs for this purpose are also briefly explored.

KEYWORDS
Sum-Product Networks, Multi-Agent Modeling, Decision Making,
Tractability, Scalability, Data Driven

1 INTRODUCTION
Decision making is an essential aspect of many multi-agent envi-
ronments. This process consists of making predictions of multiple
agents’ behavior on the basis of available evidence, including past
decisions and the state of the system. Agents make decisions based
on either their own observations of the environment and reasoning
of other agents’ actions or the collected observations of all agents.
A large number of agents and interactions may cause inference to
become exponentially complex, leading to intractable reasoning.
Therefore, when designing these multi-agent systems, it is crucial
to consider scalability. One approach to modeling these systems
are graphical models, a valuable tool which also provides a visual
representation of the relationships between agent state, inference,
and decisions. The structure of the graph then determines the com-
plexity of performing inference and decision making.

Sum-product networks (SPN) [3] are a graphical model that
can perform tractable exact inference for most types of probabilistic
inferences. Sum-product-max networks (SPMN) [5] are built
upon the original SPN to translate the model to decision making.
We propose deploying recurrent-sum-product-max networks
(RSPMNs) [8], an extension of SPMNs that adapt SPMNs to tem-
poral or dynamic environments, to model multi-agent decision

Proc. of the Multiagent Sequential Decision Making Workshop (MSDM 2023) , Zeng, Xiao,
Pan, and Doshi (eds.), May 30, 2023, Online, https://northumbria23.github.io/MSDM23/ .
2023.

making. The max-product message passing algorithm used in SPNs
has a complexity that is linear with the size of the network [3]. This
fundamental feature lends itself to a tractable multi-agent imple-
mentation, particularly in complex systems with a large number of
agents. An additional benefit inherited from SPNs is that both their
structure and parameters are learned directly from the input data.
This is especially useful when neither model specifications nor the
environment is available to the agents.

2 BACKGROUND
SPNs are directed acyclic graphical models that utilize sum and
product nodes to represent probability distributions across random
variables represented in the leaf nodes. The sum nodes model the
disjunctive data, while the product nodes capture the dependencies
between random variables [3]. A valid network can produce any
marginal, joint, or conditional inference over its random variables
through at most two passes of this structure.

Structure learning and parameter learning are integral processes
in building an SPN. Structure learning uncovers the underlying net-
work structure by discovering the relationships between variables.
Parameter learning generates the estimates for the SPN parameters,
including the weights on the sum node’s children and distributions
of the variables. LearnSPN, a popular algorithm for structure and pa-
rameter learning, is a top-down approach. Fundamental processes
include initialization, partitioning, decomposition, local parameter
learning, merging, and pruning [3]. The SPN is incrementally built
and minimizes the negative log-likelihood of the training data. This
data-driven approach is a central proponent of SPNs. The algo-
rithm continues to iterate until a stopping criterion is met, such as
convergence of likelihood or reaching an iteration threshold.

Consistency, completeness, and decomposability are the trinity
of properties that allow SPNs to accurately and efficiently perform
valid inference. Intuitively, consistency ensures the proper normal-
ization of probabilities, meaning that the sum of weights at each
sum node is equal to one. Completeness guarantees that the proba-
bility distribution of any combination of the random variables can
be computed. Decomposability allows for efficient inference and
an interpretable structure, as the SPN can be decomposed into a
product of simple distributions. Poon and Domingos [3] provides
the technical definitions of these properties.

SPMNs extend SPNs to decision making by introducing max
and utility nodes [5]. Max nodes represent action choice through
modeling utility using the utility nodes. The output generated by
max nodes is the maximum of the possible actions’ expected utility
values, and is fed upward to the rest of the network [5]. The utility

https://northumbria23.github.io/MSDM23/


MAXA1,..,An

U1 U2 U2X1...Xn,Y1...Yn 

MAXA1,..,An

U3

U4 U4X1...Xn,Y1...Yn U1 X1...Xn,Y1...Yn X1...Xn,Y1...Yn 

X1...Xn,Y1...Yn 

X1...Xn,Y1...Yn X1...Xn,Y1...Yn 

MAXA1,..,An

U7 U8 U8X1...Xn,Y1...Yn 

MAXA1,..,An

U6

U5 U5 X1...Xn,Y1...Yn U7 X1...Xn,Y1...Yn X1...Xn,Y1...Yn 

X1...Xn,Y1...Yn 

X1...Xn,Y1...Yn X1...Xn,Y1...Yn 

Figure 1: Schematic of an example RSPMN structure with binary random variables that supports centralized learning and joint
decision making.

values can be determined by a relevant domain expert, adapting the
network to a specific environment context and reward function.

RSPMNs are a further generalization built upon SPMNs, aug-
menting SPMNs to handle a temporal environment [8]. Inspired
by recurrent neural networks, a single time-step template in the
RSPMN is unrolled across multiple time steps to obtain the dynamic
network. This template is a snapshot of the network structure at
an exact time step. The sequence of networks maintains a memory
of previous decisions through their recursive connection, as the
output of one network becomes the input of the next network. This
framework empowers SPNs to model sequential decision making.
Decision making is represented as a sequence of max operations
which select the highest expected value action(s) considering the
random variable values and utilities in each time step.

Previous graphical models that are commonly used for model-
ing decision making in multi-agent environments are generally
intractable [1, 4, 9]. These are classically based on dynamic influ-
ence diagrams (DIDs) [6], and utilize various approaches to attempt
to mitigate their tractability issues. A combination of decentral-
ized designs and approximate inference algorithms trade accuracy
for computation time. These explorations are not always success-
ful. RSPMNs, unlike these models, can perform exact inference
and decision making that is linear in the size of the network [8].
Additionally, the network structure can be learned directly from
given data, rather than relying on a specification of the structure
or necessary parameters as in MDPs and DIDs.

3 RSPMNS FOR MULTI-AGENT
ENVIRONMENTS

RSPMNs can be used for a spectrum of decision-making approaches
in multi-agent environments [7]. In a centralized approach, deci-
sion making is represented by a unified agent. This central agent
accumulates the information from all agents and utilizes it to gen-
erate a joint decision. On the other extreme, a fully decentralized
approach (individualistic) distributes decision making amongst the
agents [2]. We propose using RSPMNs in three different ways: cen-
tralized learning and decision making, centralized learning and
decentralized decision making, and fully decentralized learning and
decision making.

3.1 Centralized Learning and Decisions
In this fully centralized approach, as seen in Figure 1, the RSPMN
is a unified representation. It represents a single joint model of all
agents in the environment. The partial ordering, which refers to
the organization of variables in the network, is designed such that
the centralized nature of the system is captured. The relationships
between the variables in the system as a unit are reflected by this
order. The leaves of the network receive input data from all agents,
including their observations of the current state of the system
and preferences. These leaves, representing the random variables
modeled by the RSPMN, would be all possible joint observations of
the agents for each random variable. The network computes the
joint distribution of decisions made by all agents, represented by
the max nodes. Agent coordination is facilitated by node operations,
which pass messages through their edges. This allows the network
to learn a joint policy that maps joint observations of all agents to
their joint actions.

The previous LearnRSPMN structure and parameter learning
algorithm [8] can be utilized almost as is in this approach. The
training data contains instances of the agents’ observations, actions,
and rewards – i.e., values of the corresponding random variables.
This includes the joint decisionsmade by all agents at each time step.
This input data is used to train the RSPMN, allowing the network to
learn the dependencies between the agent states and joint decisions.
The learning process would include optimizing the parameters
by minimizing the negative log-likelihood, or other similar loss
function, between the actual joint decisions and the prediction
made by the network. This approach allows for tractable joint
decision making in environments where agents are collaboratively
operating on a single task.

3.2 Centralized Learning and Decentralized
Decisions

A hybrid approach, as seen in Figure 2, combines centralized learn-
ing and decentralized decision making by decomposing the main
RSPMN into subnetworks. In this approach, each agent is assigned
their own subnetwork with max nodes representing the decision
choice of a single corresponding agent. The leaves of each subnet-
work receive input data of the respective agent’s observations of the
system state, actions, and reward values. Thus, each subnetwork,



Agent1 Agent2

MAXA1

U1 U1 U2 U2X1,Y1

MAXA2

U3 U3 U4 U4

MAXAN-1

U5 U5 U6 U6

MAXAN

U7 U7 U8 U8

AgentN-1 AgentN

X1,Y1 XN,YNX1,Y1 X1,Y1 X2,Y2 X2,Y2 XN-1,YN-1X2,Y2 X2,Y2 XN,YNXN-1,YN-1 XN-1,YN-1 XN-1,YN-1 XN,YN XN,YN

Figure 2: Schematic of an example RSPMN structure that supports centralized learning and decentralized decision making. The
other root sum node branch is similar to the product node subnetwork.

and respective agent, models its own set of random variables as
leaves to serve as the input point for the agent’s training data from
its explorations. The partial ordering expresses the dependencies
between the variables for each individual agent in a decentralized
fashion.

Semantically, the overall RSPMN would still represent all agents
in the environment with the difference that each agent’s actions are
conditioned on its own observations only. The top subnetwork that
connects the various agents’ models represents a message passing
system that could relay the necessary information between agents,
such as that required for coordination among them. With this, each
agent learns its own policy, which promotes the centralized learning
of decentralized decision-making models in conjunction with any
needed coordination mechanism.

The decomposition of the RSPMN into subnetworks means that
the significant divergence between this approach and the fully
centralized approach lies in the semantics of the max nodes. This
approach shifts the training input data from joint observations and
joint actions across all agents to the observations and actions of
each of the agents.

Nonetheless, the entire RSPMN can still be learned as one net-
work using LearnRSPMN, analogously to the centralized method,
but we may need to provide a structural template to the learning
algorithm in order to clearly separate the agents’ subnetworks. We
will learn the dependencies between states of each individual agent
and their respective decisions, while also still considering potential
interactions between the agents. As such, this approach allows the
network to recognize individual agents, while still modeling the
dependencies between observations and decisions, and between
each other, for data-driven and tractable decision making.

3.3 Decentralized Learning and Decisions
Finally, a fully decentralized approach isolates agent learning and
decision making entirely. To model this, each agent has its own
RSPMN (see Figure 3), with the leaves representing the random
variables that model the agent’s observations, and reward values.
Since there are no edge connections between independent RSPMNs,

these agents will have to learn a representation of the other agents’
decision-making behavior and interpret them to make decisions.
Thus, agents require having evidence of how other agents in the
environment act. This necessitates adding one or more additional
random variable Z , as seen in Figure 3, to capture behavior repre-
sentations of the other agents in the shared system.

The training data consists of the individual agents’ observations
of its state, actions, reward values as well as some evidence of the
other agents’ behaviors (for e.g., these could be observations of
its actions). This approach may call for modification to structural
and parameter learning to integrate a learned representation to
incorporate this evidence.

This fully decentralized learning allows agents to learn their
own policy on the basis of their own observations. There are no
messages passed between agents, so the policy is entirely based on
the individual agents’ information, which may include a learned
representation of other agents’s behaviors from its own observa-
tions. As such, each agent would have their own representation
of the environment. A consideration is that the influence of the
other agents’ behaviors on the subject agent may be hidden and
lose interpretation, running contrary to the benefit of SPNs.

4 CONCLUSION
Across a multitude of domains, systems of multiple agents are
prevalent. In realistic environments, the number of agents can
cause tractability issues in traditional models. This paper high-
lights the potential of RSPMNs as an efficient approach to modeling
multi-agent decision making. The outlined approaches offer scal-
able solutions for inference in complex multi-agent environments,
with a linear complexity in the size of the network. The network
structure is learned directly from the data, setting the model apart
from traditional approaches. The three schemes we present allow
RSPMNs to model various multi-agent systems, such as partially
observable and non-cooperative environments. In future work, we
intend to develop the learning algorithms and apply the RSPMNs
to multi-agent environments to demonstrate their practicality over
existing models in realistic environments.



U1 U1 U2 U2X1,Y1 U3 U3 U4 U4 U5 U5 U6 U6 U7 U7 U8 U8X1,Y1

MAXA1

Z Z

MAXA1

Z Z

MAXA1

Z Z

MAXA1

Z Z

X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1 X1,Y1

Figure 3: Schematic of an example RSPMN structure that supports decentralized learning and decision making.

Limitations. Although RSPMNs are advantageous due to their
tractability and data driven approach, there are a few potential lim-
itations. When considering systems with a large amount of agents,
the network can grow unbounded in size. This will not affect the
tractability, but will negatively impact run time and memory. This
increased computational overhead can make training and maintain-
ing the RSPMN model challenging. Learning the structure of an
RSPMN directly from data allows for the network to be finetuned,
however finding a suitable training set is not a trivial task. After
identifying a data set, it is essential to rigorously analyze the data
as the quality of the input is directly related to the quality of the
output.

ACKNOWLEDGMENTS
We thank Daniel Redder and Gayathri Anil for reviewing and edit-
ing this paper, and Hari Tatavarti for assistance with RSPMNs. This
research was supported in part by NSF grant #IIS-1815598.

REFERENCES
[1] Kobi Gal and Avi Pfeffer. 2008. Networks of Influence Diagrams: A Formalism for

Representing Agents’ Beliefs and Decision-Making Processes. Journal of Artificial

Intelligence Research 33 (2008), 109–147.
[2] Piotr J. Gmytrasiewicz and Prashant Doshi. 2005. A Framework for Sequential

Planning in Multiagent Settings. Journal of Artificial Intelligence Research 24 (2005),
49–79.

[3] Pedro Domingos Hoifung Poon. 2011. Sum-product networks: A new deep ar-
chitecture. In Proceedings of the Conference on Computer Vision Workshops (ICCV
Workshops). The Institute of Electrical and Electronics Engineers, Barcelona, Spain,
689–690.

[4] Daphne Koller and Brian Milch. 2001. Multi-agent Influence Diagrams for Repre-
senting and Solving Games. In IJCAI. 1027–1034.

[5] Prashant DoshiMazenMelibari, Pascal Poupart. 2016. Sum-Product-MaxNetworks
for Tractable Decision Making. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (ICCV Workshops, Vol. IJCAI-16). The
Association for the Advancement of Artificial Intelligence, New York City, New
York, 1846–1852.

[6] Robert M. Oliver and James Q. Smith (Eds.). 1990. Influence Diagrams, Belief Nets,
and Decision Analysis. John Wiley & Sons.

[7] Victor Lesser Ping Xuan. 2002. Multi-agent policies: From Centralized Ones
to Decentralized Ones. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems. The Association for Computing
Machinery, Bologna, Italy, 1098–1105.

[8] Hari Teja Tatavarti. 2020. Recurrent Sum-Product-Max Networks for DecisionMaking
in Perfectly-Observed Environments. Master’s thesis. University of Georgia, Athens,
Georgia.

[9] Yifeng Zeng and Prashant Doshi. 2012. Exploiting Model Equivalences for Solving
Interactive Dynamic Influence Diagrams. Journal of Artificial Intelligence Research
43 (2012), 211–255.


	Abstract
	1 Introduction
	2 Background
	3 RSPMNs for Multi-Agent Environments
	3.1 Centralized Learning and Decisions
	3.2 Centralized Learning and Decentralized Decisions
	3.3 Decentralized Learning and Decisions

	4 Conclusion
	Acknowledgments
	References

