
Haley: An End-to-End, Scalable Web Service Composition
Tool

Haibo Zhao
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA, 30602

zhao@cs.uga.edu

Prashant Doshi
LSDIS Lab, Dept. of Computer Science

University of Georgia
Athens, GA, 30602

pdoshi@cs.uga.edu

1. MOTIVATION AND SIGNIFICANCE
A major benefit of service oriented architectures (SOAs)

is the potential to automatically compose Web services into
business processes thereby promoting flexibility and reusabil-
ity. The business process execution language for Web ser-
vices (WSBPEL) provides a standard way to represent the
Web service compositions. However, manually designing
BPEL processes is cumbersome and tedious. While visual
BPEL editing tools such as the ActiveBPEL editor provide
some ease, it quickly becomes impractical as the number of
Web services increases.

In this regard, automated service composition using ma-
chine understandable and semantically-annotated service de-
scriptions is promising. Existing composition approaches
utilize AI planning but suffer from the following limitations:
(1) Tools such as Astro and SHOP2 do not operate directly
on Web service descriptions in WSDL; (2) many techniques
do not scale due to the inherent computational complexity
of their planning algorithms; (3) both Astro and SHOP2
assume that services are determinstic and fail to capture
the uncertainty; and (4) most approaches primarily focus
on functional satisfiability and do not account for key non-
functional requirements such as cost, response times and
reliability of the generated processes. Consequently, few
comprehensive tools exist for automatically composing Web
services. A notable freely available tool is the Astro suite,
which allows for WSBPEL based automated business pro-
cess composition. However, it requires that the Web ser-
vices be described using abstract BPEL – a surprising and
unintuitive choice for describing services. In particular, the
design of the abstract BPEL itself is time-consuming and
complicated.

Our tool suite, Haley1 is an end-to-end scalable solution
for automating Web service composition. Haley accepts Web
service descriptions in SA-WSDL, which is a new W3C rec-
ommended language for annotating and describing Web ser-
vices. For this, we provide an Eclipse plug-in to view and
edit the SA-WSDL descriptions of the component services.
Haley promotes large compositions by exploiting the hier-
archical decomposition that often exists naturally in many
real-world processes. Additionally, Haley offers a way to mit-
igate the problem of large state spaces by composing at the

1Haibo Zhao and Prashant Doshi, “Haley: A Hierarchical
Framework for Logical Composition of Web Services”, in
Intl. Conf. on Web Services (ICWS), 2007, pp.312-319

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

Input
Files

Parser AI Planning BPEL
Generation

Deployment

SAWSDL

WSLA

Nonfunction
Decriptions

Function
Decriptions

Process Goals

Hierarchies

Planning
Domain

BPEL
Generator

Planning
Domain
Generator

WSBPEL
Engine

Query KB
For the
current
status

BPEL

Update
KB With
effects

Component
Service

Decision
Theoretic

Logic

Planner

(eDT-GOLOG)

File

Conditional
Plan

Executable

First Order
KB

SAWSDL
Viewer

Figure 1: Architectural details of Haley.

logic level and provides the expressive power of first order
logic.

At its core, Haley utilizes a first order decision theoretic
planner (semi-Markov decision process) to compose the ser-
vices. The planner is stochastic thereby explicitly modeling
the uncertain behaviors of Web services and provides guar-
antees of expected optimality with respect to cost and other
QoS metrics. Haley produces a composition specified using
standard WSBPEL, which may be executed in any BPEL
implementation.

2. ARCHITECTURAL DETAILS
Haley is an end-to-end technology solution for Web service

composition providing an Eclipse plug-in for viewing input
service descriptions in SA-WSDL to automatically generat-
ing an executable BPEL composition. We show the archi-
tecture in Fig. 1 and describe the main components in the
tool suite below:
•SA-WSDL Parser and Viewer SA-WSDL (semantic

annotations for WSDL) extends WSDL by allowing seman-
tic annotations in the form of model references and schema
mappings. In addition to specifying the inputs and out-
puts of a service, SA-WSDL also allows the specification of
preconditions and effects, which are useful for composing
services. However, the current SA-WSDL specification does
not ground preconditions and effects using any language.
We therefore extend SA-WSDL to support preconditions
and effects specified using SWRL, a popular semantic Web
rule language.



In addition to parsing SA-WSDL files using the SAWSDL4J
API, Haley provides a new Eclipse plug-in for graphically
viewing SA-WSDL based services descriptions. We show a
snapshot of the viewer in Fig. 2.

Figure 2: Eclipse plug-in for viewing SA-WSDL files.

•WSLA Parser Web service level agreements (WSLA)
specify nonfunctional quality of service (QoS) parameters of
Web services such as response times, costs and availability
percentages. Haley is not limited to any particular service
agreement specification and can be easily extended to sup-
port WS-Agreement or other agreement specifications. QoS
considerations are often neglected while manually designing
BPEL processes as well as by many other automated com-
position techniques. Haley uses a decision-theoretic planner
for the composition that provides an intuitive way to model
the QoS parameters and optimize them.
•Process Hierarchy Modeler Service composition

methods often do not scale well to many services, which
makes it difficult to use them in real-world applications. Ha-
ley promotes scalability by exploiting the hierarchies usually
found in real-world processes. To facilitate this, Haley pro-
vides an intuitive GUI (see Fig. 3) to construct process hier-
archies by importing component Web services at each level.
The modeler may also be used to specify the start states,
multiple goals and associated priorities at each level of the
hierarchy. All of this information is written into an XML
file for input to the planner.

Figure 3: GUI for intuitively formulating the process

hierarchy.

•Planning Domain Generator Given the functional
and nonfunctional descriptions of individual Web services
and goal descriptions for the target process, we automati-
cally generate a corresponding planning domain file. The
planning domain contains a first order logical description of
the operations and their inputs, outputs, preconditions and
effects as well as the goals.
•eDT-GOLOG Planner Haley uses a first-order Pro-

log based planner that has been extended to make it appli-
cable to situation calculus and decision theory. In addition
to being expressive, eDT-GOLOG allows us to model the

uncertainty of Web service operations, QoS measures and
provide guarantees of optimality while preserving speed of
planning. We have empirically evaluated the performance of
eDT-GOLOG in comparison with two other well-known WS
composition techniques – HTNs augmented with informa-
tion gathering actions and MBP (used in the Astro project).
Our results have shown the improved performance in terms
of optimality and speed obtained by the planner. The plan-
ner takes as input the planning domain file and produces a
policy or a conditional plan for the composition.
•BPEL Generator Haley transforms the conditional

plan output by the planner into an executable WSBPEL file.
Manual BPEL process design requires designers to specify
name spaces, variables, partner links, and the control flow
of the activities. Haley programmatically generate an exe-
cutable BPEL and then deploys it in an ActiveBPEL engine.
This saves time and effort, and avoids common grammatical
and logical errors while designing BPEL processes.
• KB based Process Monitor In order to deter-

mine which branches to take while executing the BPEL,
service operations once performed are asserted in a first or-
der knowledge base (KB). The KB is implemented using an
embedded Prolog engine wrapped in a Web service. The KB
is updated with the effects of the operations and queried for
the next operation to perform.

In summary, Haley automatically composes an executable
WSBPEL process given component services described using
SA-WSDL and service agreement files, using a first-order
logic based planner that is both scalable and expressive.

3. IMPLEMENTATION DETAILS
Haley is implemented as a suite of freely-available Eclipse

plug-ins and a stand-alone Eclipse RCP application. It is
provided under the EPL license v1.0. Some of the tech-
nologies used in developing Haley are Draw2d, EMF, GMF,
Prolog and ActiveBPEL API. Haley also contributes several
independent tools and experiences to the SOA community:
(1) SA-WSDL viewer is a complete and independent Eclipse
plug-in and is the first viewer for SA-WSDL files. (2) eDT-
GOLOG may be used as a powerful stand-alone decision-
theoretic planner. The system is compliant to the Eclipse
plug-in standard and can be integrated with other Eclipse-
based tools like WTP, WSDL editor, ActiveBPEL Simulator
and ActiveBPEL designer in case process designers want to
customize the generated BPEL code.

4. DISCUSSION
We believe that automated Web service composition is

both promising and practical, but few tools exist in support
due to inherent scalability problems. Haley provides a state
of the art, end-to-end and scalable solution for Web service
composition, and an interface that hides the complexity of
AI planning and BPEL from process designers. Haley offers
unique advantages over manual BPEL process design and
other automated approaches to composition. Development
of Haley represents a significant milestone in the research
on Web service composition, and we are excited to bring a
significant contribution to application development in SOA.

We plan to integrate service discovery with the compo-
sition framework, and test Haley with additional real-world
large scale scenarios. We will also continue to improve the
usability and reliability of Haley.


