

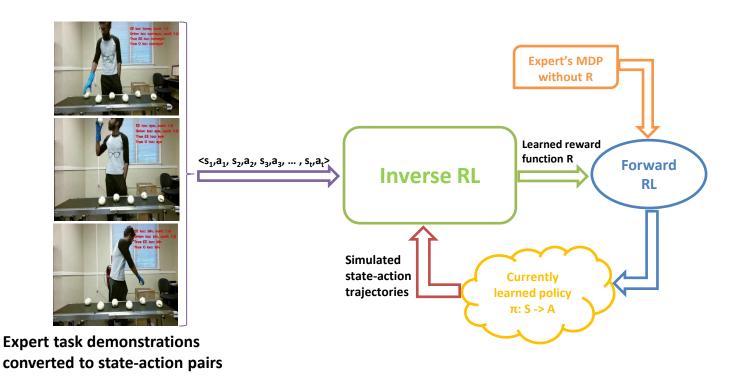
Dec-AIRL: Decentralized adversarial IRL for human-robot teaming

Prasanth Suresh, Yikang Gui, Prashant Doshi

THINC Lab, School of Computing, UGA, Athens, GA - 30605

Inverse Reinforcement Learning

- Popular Machine Learning technique
- Using expert demonstrations learner learns a reward function modelling the expert's preferences



Human-robot teaming

- Cobot collaboratively working with a human in a shared workspace
- Learning goals -> Task learning + avoiding adverse interactions (such as trying to pick same object as the human simultaneously)
- Complex behavior non-trivial to program
- Learning via online RL entails reward engineering
- Physical robot could try potentially dangerous actions during learning
- Can learn task and collaboration through human-human team demonstrations instead

Figure: An example of human-robot collaboration in a shared workspace. Credit: <u>Sick sensor inc.</u>

Figure: Human-human team demonstrations of the onion-sorting task.

Related work

- Existing state-of-the-art multi-agent IRL techniques:
 - MA-AIRL (Yu, Lantao, et al., ICML 2019):
 - π: S -> A_i where A_i is the action space of agent i
 - Underlying model: Markov game
 - Self-interested agents
- Existing state-of-the-art multi-agent IL techniques:
 - Co-GAIL (Wang, Chen, et al., CoRL 2022):
 - \blacksquare π : S -> A where S, A are the global state-action space
 - Underlying model: Multi-agent MDP
 - Fully centralized control

Formulates task as a decentralized MDP	

Formulates task as a decentralized MDP	Models agents with local full-observability	

Formulates task as a decentralized MDP	Models agents with local full-observability	Single reward function for the system

Formulates task as a decentralized MDP

Models agents with local full-observability

Single reward function for the system

Centralized Training
Decentralized
Execution (CTDE)
using Dec-PPO

Formulates task as a decentralized MDP

Models agents with local full-observability

Single reward function for the system

Centralized Training
Decentralized
Execution (CTDE)
using Dec-PPO

Learns a vector of policies (one for each agent)

Formulates task as a decentralized MDP

Models agents with local full-observability

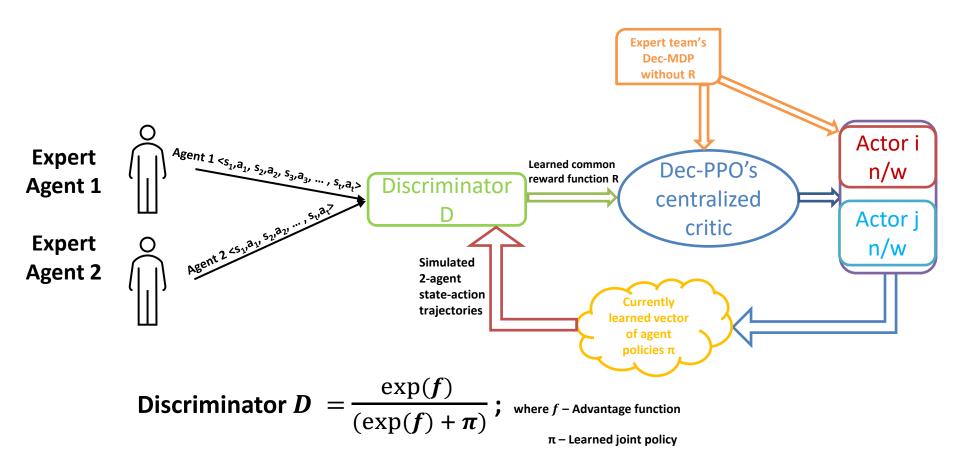
Single reward function for the system

Centralized Training
Decentralized
Execution (CTDE)
using Dec-PPO

Learns a vector of policies (one for each agent)

Agent policy maps agent state to agent action

Decentralized Adversarial IRL



$$R \leftarrow \log D - \log (\mathbf{1} - D) = f - \log \pi$$
 ; where R is the entropy regularized common reward

Decentralized PPO: Overview

- Single agent PPO Actor-critic based RL method
- Dec-PPO multi-agent generalization of PPO
- One centralized critic for many decentralized actors
 Train critic network using following loss fn:

$$L_t^{VF}(\omega) = (V_\omega^\pi(s^t) - \hat{V}^{targ}(s^t))^2 < -$$
 Critic value function loss

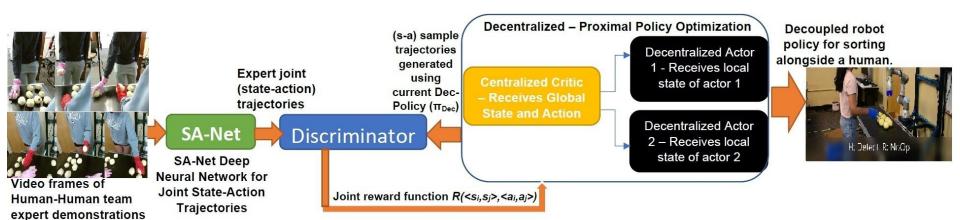
Train actor networks using following loss fn:

$$L_{i}^{CLIP}(\omega) = E_{\left(s_{i}^{t}, a_{i}^{t}\right) \sim \pi_{\omega, i}}[\min(\lambda_{i} A^{\pi_{\omega, i}}, \operatorname{clip}(\lambda_{i}, 1 - \epsilon, 1 + \epsilon) A^{\pi_{\omega, i}})]$$

$$L_{j}^{CLIP}(\omega) = E_{\left(s_{j}^{t}, a_{j}^{t}\right) \sim \pi_{\omega, j}}[\min(\lambda_{j} A^{\pi_{\omega, j}}, \operatorname{clip}(\lambda_{j}, 1 - \epsilon, 1 + \epsilon) A^{\pi_{\omega, j}})] \quad \text{\leftarrow Policy loss of actor networks}$$

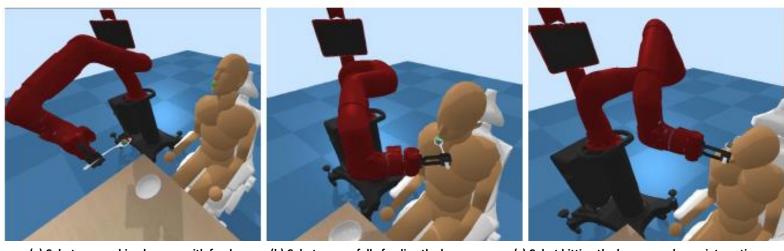
$$\lambda_{i}^{t} = \frac{\pi_{\omega, i}(a_{i}^{t} \mid s_{i}^{t})}{\pi_{\omega, i}^{old}(a_{i}^{t} \mid s_{i}^{t})}; \lambda_{j}^{t} = \frac{\pi_{\omega, j}(a_{j}^{t} \mid s_{j}^{t})}{\pi_{\omega, i}^{old}(a_{i}^{t} \mid s_{i}^{t})} \quad \text{\leftarrow Actors' importance sampling ratios}$$

End-to-end pipeline



Experiment 1 – Simulated patient assistance

- Cobot needs to feed human successfully
- Avoid collisions while reaching moving human



(a) Cobot approaching human with food.

(b) Cobot successfully feeding the human.

(c) Cobot hitting the human – adverse interaction.

Attributes like human joint angles are not perfectly observable by the cobot

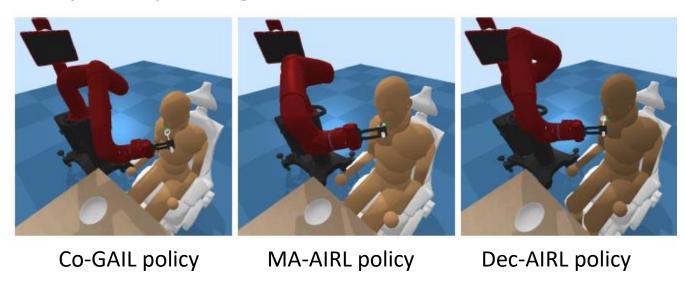
Simulated patient assistance: Results

Method	# steps	# adverse interactions	Total reward
Expert	24.5	4	148.6
MA-AIRL	131.2	12	108
Co-GAIL	164.5	19	91.4
Dec-AIRL	35	7	143.2

- Baseline policies encounter more adverse interactions, drop some food and gain less reward
- Dec-AIRL takes a longer path than expert, but successfully feeds the human

Simulated patient assistance: Results

Baselines Co-GAIL and MA-AIRL condition cobot policy on global state



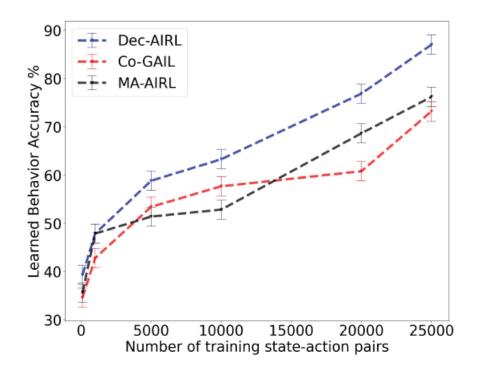
Dec-AIRL improves upon baselines by learning a decentralized policy

Experiment 2 – Human-cobot line sorting

- Collaboratively sort onions on a conveyor line
- Expert demos are by a human-human team
- Time synced frames sent to SA-Net to get joint trajectories

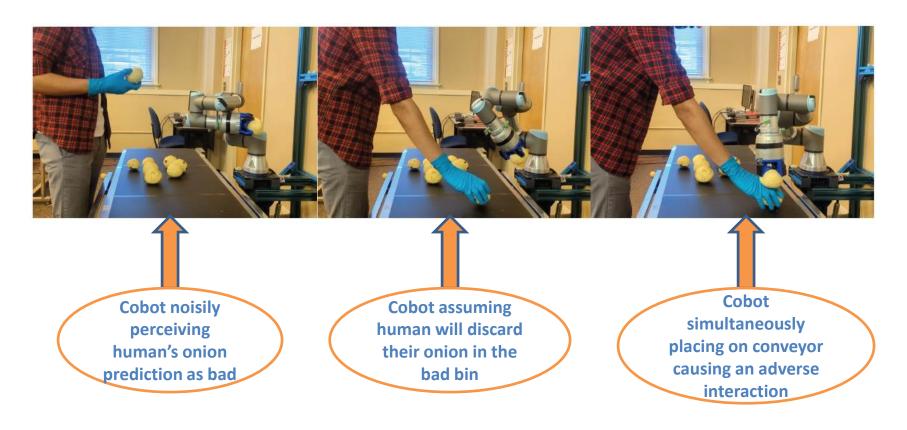
Human-cobot line sorting: Results

Method	(TP,FP,TN,FN)	Precision	Recall
Human-human	(4,1,5,0)	0.8	1.0
Human-cobot (MA-AIRL)	(3,2,3,2)	0.6	0.6
Human-cobot (Dec-AIRL)	(3,2,4,1)	0.6	0.75



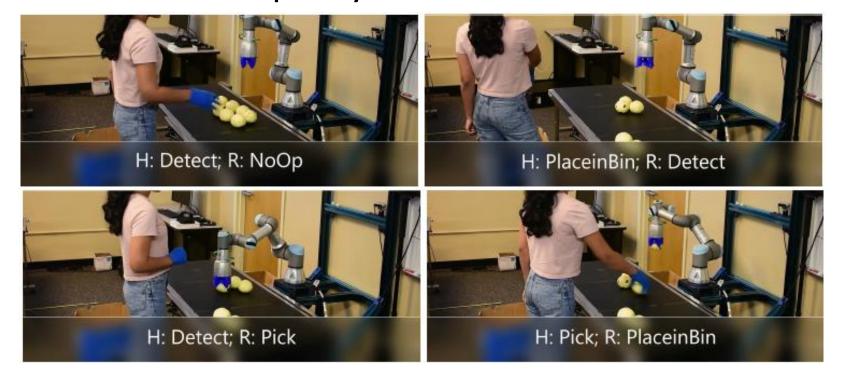
Human-cobot line sorting – Baseline policy

MA-AIRL policy encounters adverse interaction since human state estimate is noisy during execution



Human-cobot line sorting – Our policy

Dec-AIRL policy fares much better because the learned cobot policy is decentralized.



Conclusion

- Presented a novel IRL method using a decentralized MDP as the underlying model
- Showed generalizability across two domains, 1.
 Continuous, simulated, and 2. Discrete and realistic
- Presented Dec-PPO as part of Dec-AIRL that uses CTDE learning
- Learned to collaborate while avoiding adverse interactions

Future work

- In cases where local full-observability is infeasible, problem can be modelled as a Dec-POMDP
- Onion sorting domain can be generalized to continuous state-action setup to further test deployability
- Sample complexity analysis can be done to examine learning efficiency and convergence
- Sub-optimality and/or bounded-rationality of humans can be factored into learning
- After IRL convergence, online RL or human-in-theloop techniques can be used to refine cobot's policy if need be

Bibliography (partial)

- Saurabh Arora and Prashant Doshi. 2021. A survey of inverse reinforcement learning: Challenges, methods and progress. Artificial Intelligence 297 (2021).
- Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002. The Complexity of Decentralized Control of Markov Decision Processes.
- Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision processes.
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym.
- Zackory Erickson, Vamsee Gangaram, Ariel Kapusta, C. Karen Liu, and Charles C. Kemp. 2020. Assistive Gym: A Physics Simulation Framework for Assistive Robotics. IEEE International Conference on Robotics and Automation (ICRA) 1
- Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization. arXiv preprint arXiv:1603.00448
- Justin Fu, Katie Luo, and Sergey Levine. 2018. Learning Robust Rewards with Adverserial Inverse Reinforcement Learning. In International Conference on Learning Representations.

