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Inverse Reinforcement Learning

Popular Machine Learning technique

Using expert demonstrations learner learns a reward function 
modelling the expert’s preferences

Expert task demonstrations 
converted to state-action pairs

<s1,a1, s2,a2, s3,a3, … , st,at>

Inverse RL

Learned reward 
function R Forward 

RL

Currently 
learned policy 

π: S -> A

Simulated 
state-action 
trajectories

Expert’s MDP 
without R



Human-robot teaming

Cobot collaboratively working with 
a human in a shared workspace

Learning goals -> Task learning + 
avoiding adverse interactions (such 
as trying to pick same object as the human 
simultaneously)

Complex behavior non-trivial to 
program

Learning via online RL entails 
reward engineering

Physical robot could try potentially 
dangerous actions during learning

Can learn task and collaboration 
through human-human team 
demonstrations instead

Figure: An example of human-robot collaboration 
in a shared workspace. Credit: Sick sensor inc.

Figure: Human-human team demonstrations of the onion-sorting task. 

https://cdn.sick.com/media/content/hd1/h74/9992734998558.jpg


Related work

Existing state-of-the-art multi-agent IRL techniques:

MA-AIRL (Yu, Lantao, et al. , ICML 2019) :

π: S -> Ai where Ai is the action space of agent i

Underlying model: Markov game

Self-interested agents

Existing state-of-the-art multi-agent IL techniques:

Co-GAIL (Wang, Chen, et al. , CoRL 2022): 

π: S -> A where S, A are the global state-action space

Underlying model: Multi-agent MDP

Fully centralized control



Decentralized AIRL: Overview

Formulates task as 
a decentralized 

MDP

Operates with local 
full-observability

Single reward 
function for the 

system

Centralized Training 
Decentralized 

Execution (CTDE) 
using Dec-PPO

Learns a vector of 
policies (one for 

each agent)

Agent policy maps 
agent state to agent 

action 
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Decentralized Adversarial IRL

Discriminator 
D

Learned common 
reward function R Dec-PPO’s 

centralized 
critic

Expert team’s 
Dec-MDP 
without R

Discriminator 𝑫 =
exp(𝒇) 

(exp(𝒇) + 𝝅)
 ;  where 𝒇 – Advantage function   

                                                      π – Learned joint policy 

𝑹 ← log 𝑫 –  log(𝟏 −  𝑫) =  𝒇 –  log 𝝅 ; where 𝑹 is the entropy regularized common reward

Expert
Agent 1

Expert
Agent 2

Currently 
learned vector 

of agent 
policies π

Simulated 
2-agent 
state-action 
trajectories

Actor i 
n/w

Actor j 
n/w



Decentralized PPO: Overview

Single agent PPO – Actor-critic based RL method

Dec-PPO - multi-agent generalization of PPO 

One centralized critic for many decentralized actors

Train critic network using following loss fn:

 𝐿𝑡
𝑉𝐹 𝜔 = 𝑉𝜔

𝜋 𝑠𝑡 −  ෠𝑉𝑡𝑎𝑟𝑔 𝑠𝑡  
2

 <- Critic value function loss

Train actor networks using following loss fn:

                       <- Policy loss of actor networks

  𝜆𝑖
𝑡  =

𝜋𝜔,𝑖(𝑎𝑖
𝑡│𝑠𝑖

𝑡 ) 

𝜋𝜔 ,𝑖
𝑜𝑙𝑑(𝑎𝑖

𝑡│𝑠𝑖
𝑡 )

 ; 𝜆𝑗
𝑡  =

𝜋𝜔,𝑗(𝑎𝑗
𝑡│𝑠𝑗

𝑡 ) 

𝜋𝜔,𝑗
𝑜𝑙𝑑(𝑎𝑗

𝑡│𝑠𝑗
𝑡 )

 <- Actors’ importance sampling ratios

𝐿𝑖
𝐶𝐿𝐼𝑃 𝜔  = 𝐸 𝑠𝑖

𝑡,𝑎𝑖
𝑡 ∼𝜋𝜔,𝑖

𝑚𝑖𝑛 𝜆𝑖 𝐴𝜋𝜔,𝑖 , 𝑐𝑙𝑖𝑝 𝜆𝑖 , 1 − 𝜖, 1 + 𝜖 𝐴𝜋𝜔,𝑖

𝐿𝑗
𝐶𝐿𝐼𝑃 ω = 𝐸

𝑠𝑗
𝑡,𝑎𝑗

𝑡 ∼πω,𝑗
𝑚𝑖𝑛 λ𝑗 𝐴πω,𝑗 , 𝑐𝑙𝑖𝑝 λ𝑗 , 1 − ϵ, 1 + ϵ 𝐴πω,𝑗



End-to-end pipeline



Experiment 1 – Simulated patient assistance

Cobot needs to feed human successfully

Avoid collisions while reaching moving human

Attributes like human joint angles are not 
perfectly observable by the cobot

(a) Cobot approaching human  with food.             (b) Cobot successfully feeding the human.             (c) Cobot hitting the human – adverse interaction. 



Simulated patient assistance: Results

Baseline policies encounter more adverse 
interactions, drop some food and gain less 
reward

Dec-AIRL takes a longer path than expert, but 
successfully feeds the human



Simulated patient assistance: Results

Baselines Co-GAIL and MA-AIRL condition 
cobot policy on global state

Dec-AIRL improves upon baselines by learning 
a decentralized policy

Co-GAIL policy    MA-AIRL policy        Dec-AIRL policy 



Experiment 2 – Human-cobot line sorting

Collaboratively sort onions on a conveyor line

Expert demos are by a human-human team

Time synced frames sent to SA-Net to get joint trajectories



Human-cobot line sorting: Results



Human-cobot line sorting – Baseline policy

MA-AIRL policy encounters adverse interaction 
since human state estimate is noisy during 
execution

Cobot noisily 
perceiving 

human’s onion 
prediction as bad

Cobot assuming 
human will discard 
their onion in the 

bad bin

Cobot 
simultaneously 

placing on conveyor 
causing an adverse 

interaction



Human-cobot line sorting – Our policy

Dec-AIRL policy fares much better because the 
learned cobot policy is decentralized.



Conclusion

Presented a novel IRL method using a decentralized MDP 

as the underlying model

Showed generalizability across two domains, 1. 

Continuous, simulated, and 2. Discrete and realistic

Presented Dec-PPO as part of Dec-AIRL that uses CTDE 

learning

Learned to collaborate while avoiding adverse 

interactions



Future work

In cases where local full-observability is infeasible, 
problem can be modelled as a Dec-POMDP

Onion sorting domain can be generalized to 
continuous state-action setup to further test 
deployability

Sample complexity analysis can be done to examine 
learning efficiency and convergence

Sub-optimality and/or bounded-rationality of 
humans can be factored into learning

After IRL convergence, online RL or human-in-the-
loop techniques can be used to refine cobot’s policy 
if need be
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