
International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

Dynamic Workflow Composition using Markov
Decision Processes

Prashant Doshi
Dept. of Computer Science, Univ. of Illinois at Chicago,
851 S. Morgan St., Chicago, IL 60607
Email: pdoshi@cs.uic.edu

Richard Goodwin and Rama Akkiraju
IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532
Email: {rgoodwin,akkiraju}@us.ibm.com

Kunal Verma
Dept. of Computer Science
Univ. of Georgia, Athens, GA 30602
Email: verma@cs.uga.edu

Abstract
The advent of Web services has made automated workflow composition relevant to Web
based applications. One technique that has received some attention, for automatically
composing workflows is AI-based classical planning. However, workflows generated by
classical planning algorithms suffer from the paradoxical assumption of deterministic
behavior of Web services, then requiring the additional overhead of execution monitoring
to recover from unexpected behavior of services due to service failures, and the dynamic
nature of real-world environments. To address these concerns, we propose using Markov
decision processes (MDPs), to model workflow composition. To account for the
uncertainty over the true environmental model, and for dynamic environments, we
interleave MDP-based workflow generation and Bayesian model learning. Consequently,
our method models both, the inherent stochastic nature of Web services, and the dynamic
nature of the environment. Our algorithm produces workflows that are robust to non-
deterministic behaviors of Web services and that adapt to a changing environment. We
use a supply chain scenario to demonstrate our method and provide empirical results.

INTRODUCTION

As service oriented architectures become more widely deployed, it will become more

common for enterprises to provide a Web services based interface to their core business

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

systems. The task of business process integration and management (BPIM) will then

involve linking together both intra-enterprise and inter-enterprise services1 to achieve the

desired business objectives. As we illustrate in Figure 1, the workflows that arise out of

BPIM will be composed of invocations of Web services based interfaces of the enterprise

business systems.

Figure 1: BPIM Layer in Enterprise IT Infrastructure

Prevalent techniques for BPIM and the analogous workflow composition problem are

time consuming and often involve the use of custom and proprietary technology for

connecting business partners. Such techniques often produce inflexible workflows, which

are expensive to maintain. The advent of Web services has the potential to significantly

reduce the cost by introducing standard protocols and helping to automate the process.

Specifically, the ability to dynamically discover and bind to Web services using Web

services discovery mechanisms facilitate automated workflow compositions2.

1 Intra-enterprise and inter-enterprise service integration are often called Enterprise Application Integration
(EAI) and Business to Business (B2B), respectively.
2Workflow composition using Web services is sometimes also called Web services choreography.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

If we view workflow composition as a goal-oriented process, AI-inspired planning

techniques appear suitable for the task. Preliminary efforts in this respect (Wu, Sirin,

Hendler, Nau, & Parsia, 2003; Sheshagiri, desJardins, & Finin, 2003; Carman, Serafini,

& Traverso, 2003) utilize classical STRIPS-style planning algorithms and their variants

that assume deterministic behavior of Web services. These efforts represent early steps

in automating the workflow composition process; however they are limited in several

ways. Classical planning algorithms do not consider the inherent uncertainty in Web

services behaviors while generating the workflow. They assume a static environment and

do not present a principled method to manage workflows in dynamic environments, and

they do not include a method for selecting between candidate workflows.

In this paper, we propose using decision-theoretic planning to automate Web services

based workflow composition. Decision-theoretic planning provides a principled method

to generate robust workflows, while simultaneously relaxing many of the unrealistic

assumptions characterizing classical planning algorithms. Specifically, decision-theoretic

planning formalisms model the uncertainty present in the process, and produce a plan that

optimally balances the expected risks and rewards. Decision-theoretic planning is based

on the widely accepted Kolmogorov axioms of probability and the axiomatic utility

theory. In this paper, we utilize a decision-theoretic planning formalism called Markov

decision processes (MDPs) (Puterman, 1994; Russell & Norvig, 2003) to model the

problem of workflow composition. Our method models both, the stochastic nature of

services, and the dynamic nature of the environment producing workflows that are robust

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

and adaptive. The solution of a MDP produces a policy that optimally3 guides a stateful

workflow towards its goal, based on the current model of the dynamic environment. We

assume that neither is the true model known a ' priori nor is it static. To deal with the

lack of prior information and the possibly changing environment, we intersperse policy

computation with Bayesian model learning. Our approach allows the quality of the

generated workflows to gradually improve as better models are learned. Our focus in this

paper is to automatically establish the workflow logic and avoid concentrating on the

implementation details. Though, in this paper, we have selected a motivating scenario

that produces linear workflows only, our method is applicable for generating workflows

of any structure. Additionally, as we mention later, complementary formalisms such as

hierarchical MDPs (Pineau & Thrun, 2002), provide an analogous method for generating

nested workflows that are suitable for large complex scenarios. One focus of our future

work is to explore the scalability of our method and utilization of such additional relevant

techniques.

This paper is structured in the following manner. In the next section, we briefly review

Markov decision processes. We then present our motivating scenario in the section that

follows. This scenario is used as a running example for rest of the paper. Thereafter, we

demonstrate the application of MDPs to generating workflows. The ensuing two sections

focus on our model learning approach and empirical results, respectively. Finally, we

discuss the prior related work, and conclude this paper with a discussion.

3 Optimality may be measured with respect to expected cost of executing the actions of the workflow.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

BACKGROUND: MARKOV DECISION PROCESSES

In this section, we present a brief exposition on Markov decision processes (MDP). In

particular, we introduce only the concepts that are relevant to our work, and refer the

interested reader to (Puterman, 1994) for more details.

A MDP models the decision problem as inherently stochastic, sequential and fully

observable. Solution to a MDP produces a policy or a "universal plan". A policy assigns

to each state of the world, an action that is expected to be optimal over the period of

consideration. Thus, if an agent has a policy, then no matter what the outcome of any

action is, the agent will always know what to do next. We formally define an MDP

below.

Definition 1 (Markov Decision Process (MDP)) A Markov decision process is a tuple,

()HCTASM ,,,,= where

• S is the set of all possible states;

• A is the set of all possible actions;

• T is a transition function,)(: SAST ∆→× , which specifies the probability

distribution over the next states given the current state and action;

• C is a cost function, ℜ→× ASC : , which specifies the cost of performing each

action from each state; and

• H is the period of consideration over which the plan must be optimal, also

known as the horizon, ∞≤< H0 .

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

The transition function as defined in a MDP is Markovian, that is, the probability of

reaching the next state depends only on the current state and action, and not on the

history of earlier states. Inclusion of the transition function allows MDPs to model and

reason with non-deterministic (uncertain) actions. Furthermore, the horizon may be either

finite or infinite. If a MDP is solved over a finite horizon, then the resulting policy is

non-stationary, since the best action to perform may depend on the remaining time. For

such problems, the solution is a sequence of policies, indexed by time, which specifies

the optimal action to perform in each state. The optimal action can vary as the finite

horizon is approached. If the horizon is infinite, then the resulting policy is stationary

over time.

Standard MDP solution techniques for arriving at an optimal policy revolve around the

use of stochastic dynamic programming (Puterman, 1994) for calculation of the optimal

policy. Bellman (Bellman, 1957), via his Principle of Optimality, showed that the

stochastic dynamic programming equation, Equation (1), is guaranteed to find the

optimal policy for the MDP. One standard MDP solution technique, called Value

Iteration, involves iterating over Equation (1)-- calculating the expected value of each

state -- until the value differential for each state reduces below a given threshold4.

�
�

�
�

�

=

>
�
�
�

�
�
�+

= �
∈

−

∈

00

0)'(),|'(),(min
)('

1

n

nsVassTasC
sV Ss

n

Aan γ

(1)

4 Note that the value function provably converges over time.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

where the function, ℜ→SV n : quantifies the long-term negative value, or cost, of

reaching each state with n actions remaining to be performed.

Once we know the expected cost associated with each state of the workflow, the optimal

action for each state is the one which results in the minimum expected cost.

 (2)

In Equation (2), *π is the optimal policy which as we mentioned before, is simply a

mapping from states to actions, AS →:*π . We show the algorithm for computing the

optimal policy in Figure 2.

Often, the state of a world may be factored into a feature set. Each state is then simply a

conjunction of the feature values. In such worlds, each action typically affects only a

subset of the features. The MDPs used to model such worlds are called factored MDPs

(Boutilier, Dearden, & Goldszmidt, 1995) and are best represented and solved using

graphical formalisms called dynamic influence diagrams (DID) (Tatman & Shachter,

1990; Russell & Norvig, 2003). We show a generic two-time slice DID in Figure 3.

�
�
�

�
�
�+= �

∈

−

∈ Ss

n

Aa
sVassTasCs

'

1*)'(),|'(),(minarg)(γπ

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

Algorithm: ValueIteration(M ,ε)
Input: M /* MDP to be solved */

 ε /* max. allowed error in value of each state*/
Output: *π /*ε -optimal policy */

 /* Compute the value function */
Initialize ssV ∀← 0)('
repeat

for all Ss ∈ do

�
�
�

�
�
� += �

∈∈
Ss

Aa
sVassTasCsV

'

)'('),|'(),(min)(γ

end for

∞
−← 'VVδ

VV ←'

 until
γ

γεδ −< 1

/* Obtain the optimal policy from the value function */
for all Ss ∈ do

�
�
�

�
�
� += �

∈∈ SsAa
sVsasTasCs

'

*)'(),|'(),(minarg)(γπ

 end for
return *π

end algorithm

Figure 2: The Value Iteration algorithm for solving the MDP and computing the infinite horizon
optimal policy.

Figure 3: A generic 2-time slice dynamic influence diagram for representing factored MDPs. A
dynamic programming algorithm for solving DIDs resulting in the optimal policy, is given in
(Tatman & Shachter, 1990).

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

MOTIVATING SCENARIO

In order to illustrate the composition of workflows using Web services we present an

example motivating scenario. The scenario will serve as a running example for the rest of

the paper.

Example Scenario A ����������	� receives an order to deliver some merchandise to a

�	��
�	�. The ����������	� may satisfy the order in one of several ways. He may satisfy

the order from his own
�� 	��
 �� if sufficient stock exists. The ����������	� may

request the required parts from a � �	�	��	� � � �� � �
	� in order to produce the goods

needed to satisfy the order. The ����������	� may also search for a new � �� � �
	� of

parts, or buy them on the Spot�� ��� 	�. A costing analysis reveals that the ����������	�

will incur least cost if he is able to satisfy the order from his own
�� 	��
 �� . The

����������	� will incur increasing costs as he tries to fulfill the order by procuring parts

from his � �	�	��	� �� �� � �
	�, a new � �� � �
	�, and the � �
 ��� ��� 	�.

Figure 4: Collaboration diagram showing the interactions between the business partners in our
motivating scenario. We have used example probability values to aid understanding.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

In Figure 4, we illustrate our motivating scenario graphically. Clearly, the ����������	�

may choose from several candidate workflows. For example, the ����������	� may

initially attempt to satisfy the order from his
�� 	��
 �� . If he is unable to do so, he may

resort to ordering parts from his � �	�	��	� � � �� � �
	�. Another potential workflow may

involve bypassing the ����������	� check, since the ����������	� strongly believes

that his
�� 	��
 �� will not satisfy the order. He may then initiate a status check on his

� �	�	��	� �� �� � �
	�� These example workflows reveal two important factors for selecting

the optimal one. First, the ����������	� must possess some estimate of certainty (belief)

with which his order will be satisfied by his
�� 	��
 �� , � �	�	��	� � � �� � �
	�, � �� � �
	�,

and the � �
 ��� ��� 	�. One source of these estimates is historical data on past transactions

maintained by the ����������	�. Suitable extrapolation techniques allow the estimates

to be projected to the current time. As an alternate approach we may assume that the

����������	� is initially ignorant about these estimates, and gradually learns them from

his interactions. We adopt the latter approach in this paper. Second, at each stage, rather

than greedily selecting an action with the least cost, the ����������	� must select the

action that is expected to be optimal over the long term.

WORKFLOW COMPOSITION USING MDPs

Workflow composition in the context of Web services involves discovering and binding

to Web services that collectively implement the required process functionality. If we

view workflow composition as a goal-driven problem, then AI based planning algorithms

appear suitable candidates for automatically composing workflows. However, classical

planning assumptions do not hold as well in this domain as they might first appear to. It

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

is not the case that Web service invocations can be modeled as deterministic. Similarly,

simply finding a plan that achieves a goal is insufficient. Workflow composition needs to

take into account not only the cost and time needed to accomplish a task, but also the

factors included in service level agreements. These aspects of the problem are better

addressed by decision-theoretic planning techniques such as MDPs.

In order to demonstrate composing workflows using MDPs, let us model the example

����������	� scenario given in the previous section, as a factored MDP.

Example 1

• The state of the workflow is factored and is captured by the random variables

- Inventory Availability, Preferred Supplier Availability, New Supplier

Availability, Spot Market Availability, Order Assembled, and Order

Shipped. A state is then a conjunction of assignments of either Yes, No, or

Unknown to each random variable. Appropriate links between the random

variables are used to capture any constraints or dependencies.

• Actions are Web service invocations, A ={� � 	�� ���� 	��
 �� �� ����� , � � 	�� �

� �	�	��	� � � �� � �
	�� � ����� , � � 	�� � � 	� � � �� � �
	�� � ����� , � � 	�� � � �
 ��

� ��� 	��� ����� , � � � 	�� �	�� �� 	�, � �
� �� �� 	�}.

• The transition function, T , models the non-deterministic effect of each Web

service invocation on some random variable(s). For example, invoking the Web

service � � 	�� � ��� 	��
 �� � � ����� will cause Inventory Availability to be

assigned Yes with a probability of T (Inventory Availability=Yes | � � 	�� �

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

��� 	��
 �� � � ����� , Inventory Availability=Unknown), and assigned No or

Unknown with a probability of (1-T (Inventory Availability=Yes | � � 	�� �

��� 	��
 �� �� ����� , Inventory Availability=Unknown)).

• The cost function, C , prescribes the cost of each Web service invocation, to

the ����������	�. The costs may be obtained from the service-level agreements

between the different enterprises in the supply chain.

• We let ∞→H (a large value at which convergence is attained) which implies

that the ����������	� is concerned with getting the most optimal (cost

efficient) workflow possible.

Once our ����������	� has modeled his workflow composition problem as a MDP, he

may apply standard MDP solution techniques, described previously, to arrive at an

optimal policy.

The optimal policy, *π , as we mentioned before, is simply a mapping from states to

actions, AS →:*π . The reader at this point may wonder that how does an optimal

policy such as *π translate to an optimal workflow for the ����������	�. In Figure 5,

we give an algorithm that addresses this question. It takes the optimal policy, and the

starting state of the workflow as input, and interleaves composition and execution of the

workflow. Since no information is available at the beginning of the process, the starting

state is a conjunction of all random variables assigned the value Unknown.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

In addition to providing a guarantee of optimality, MDPs admit efficient solution

techniques. In particular, the task of computing the optimal finite horizon policy of a

MDP has been proved to be P-Complete (Papadimitriou & Tsitsiklis, 1987). Furthermore,

we contend that employing a policy for workflow generation produces robust workflows.

Since a policy is a mapping from each state to an action, the policy will always prescribe

an optimal Web service to execute at any state. For example, if a Web service fails, then

the state of the workflow remains unchanged. In such a situation, the finite horizon policy

may prescribe invoking either the same Web service as before, or a completely different

one, depending on which action is optimal then. Thus, our policy-based method for

Algorithm: Compose&ExecuteWorkflow(*π , 0s)

Input: *π /* policy from solving the MDP */
 0s /* start state of the workflow */

Output: RS /* Web service invocation responses */

0ss ←
while ≠s goal state

)(* sa π←
Execute Web service a

 Get response of a
Store response: ←),(asRS response
Using),(asRS construct next state, 's

 'ss ←
end while
return RS

end algorithm

Figure 5: Algorithm for translating a policy obtained by solving the MDP, into a workflow.

generating workflows is capable of optimally recovering from Web service failures. In

contrast, execution of traditional classical plans needs to be monitored for unexpected

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

interaction between the plan and the environment, and there is no fixed method for

handling exceptions that may arise.

Figure 6: Variations in optimal workflow execution as responses to Web service invocations change.
Two distinct workflows arise, (a) and (b), when response to a Web service invocation changes. (c)
represents an optimal workflow execution in the presence of Web service failure. When Web service
invocation � � 	�� �� �	�	��	� �� �� � �
	��� ������ � 	�� �� �	�	��	� �� �� � �
	��� ������ � 	�� �� �	�	��	� �� �� � �
	��� ������ � 	�� �� �	�	��	� �� �� � �
	��� ����� fails, returning Unknown, the workflow suggests
invoking it one more time, and then checks the Spot Market.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

In Figure 6, we present three example workflow traces that arise when the ����������	�

uses the Compose&ExecuteWorkflow algorithm in Figure 5 to compose and execute his

workflow. As expected, the workflow changes as responses to Web service invocations

change. Specifically, if the ����������	� �
�� 	��
 �� is able to satisfy the order, then he

will assemble the order and ship it to the retailer (Figure 6.(a)). However, if the
�� 	��
 ��

is unable to satisfy the order (Figure 6.(b)), the ����������	� checks his � �	�	��	� �

� �� � �
	�'s status. On receiving a positive response, the ����������	� assembles the

order using parts supplied by his � �	�	��	� �� �� � �
	�, and ships the order to the retailer.

The third workflow, Figure 6.(c), is realized in the event of a Web service failure. When

the
�� 	��
 �� is unable to satisfy his order, the ����������	� invokes the Web service to

check his � �	�	��	� � � �� � �
	�'s status, which fails, returning Unknown5. The

����������	� then performs another check on the � �	�	��	� �� �� � �
	�'s status, since the

long term expected cost of procuring parts from the � �	�	��	� �� �� � �
	� is still less than

any other alternative. A repeated failure of the Web service makes the ����������	�

check the � �
 ��� ��� 	�.

The current industry standard for representing workflows is BPEL4WS (Andrews,

Curbera, Dholakia, Goland, Klein, Leymann, Liu, & Roller, 2003). BPEL4WS which

grew out of Microsoft's XLANG and IBM's WSFL specifications, is receiving

widespread recognition in industry. To integrate our method with industry standards, we

have developed a tool for automatically converting a policy into a workflow in

BPEL4WS specification using the BPWS4J API (IBM, 2002). The resulting BPEL4WS

5 Since a failure of the Web service precludes the ����������	� from knowing the status of the � �	�	��	� �
� �� � �
	�'s inventory, Unknown is returned. An alternative way to model service failure is to include it in
the state of process.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

flow can be executed in the BPEL engine that comes bundled with IBM's Websphere

application suite.

BAYESIAN MODEL LEARNING

In an earlier section, we indicated that in order to select the optimal workflow from

several candidate ones, the ����������	� must possess some estimate of certainty with

which his requests will be satisfied. These estimates are a measure of the non-

determinism of the underlying processes, exposed as Web services, and manifest

themselves in the transition function, T , of the MDP. Clearly, the optimal policy, *π , is

dependent on these estimates, and the policy, and consequently the workflow changes as

the probabilities vary.

Figure 7 shows how the ����������	� � optimal workflow depends on his probability

estimates. The optimal workflow changes from the one in Figure 7.(a) to the one in

Figure 7.(b) as the ����������	� � estimate of the probability that his inventory can

satisfy his request drops. If this estimate is sufficiently low, then at the start state, the

expected long term cost of checking the
�� 	��
 �� (computed using the expression in

parenthesis in Equation (2)) exceeds the expected long term cost of checking the

� �	�	��	� � � �� � �
	�'s availability. In such an event, the ����������	� � optimal

workflow changes as shown in the figure.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

Figure 7: When T(Inventory Availability=Yes | Check Inventory Status, Inventory
Availability=Unknown) drops below some threshold, the optimal workflow changes from (a) to (b),
because the inventory check takes time and incurs costs that are not warranted given the low
probability that inventory will be available for use.

A frequent concern with model-based methods such as MDPs is, where do the model

probabilities come from? In this part of our work, we take the view that the

����������	� is initially ignorant about these probabilities, and he attempts to learn

them through his interactions with the environment. In a true Bayesian manner, the

����������	� initially assigns equal probabilities to each response of a Web service

invocation. An initial workflow is generated and executed using the algorithm in Figure

5. Using a Bayesian learning algorithm, Web service invocation responses obtained

during workflow execution are used to update the ����������	� � estimates of "ground

truth".6 In this manner, we interleave workflow generation and model learning. We give

the algorithm in Figure 8. Convergence arises out of the proposition that updating the

probabilities using a Bayesian learning algorithm leads almost surely to the true

probabilities. Thus, the ����������	� � workflows slowly adapt themselves to the

6 This form of learning is frequently called parameter learning in Bayesian statistics.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

ground truth through repeated interactions with the environment. In the unusual case of a

dynamic environment (the true probabilities are varying), model learning allows the

workflow to "keep up" with the changing environment.

Algorithm: Execute&Learn(M , 0s , ε , σ)

Input: M /* MDP to be solved */
 0s /* start state */

 ε /* error bound for value */
 σ /* error bound for probability estimate */

repeat
 /* Solve the MDP */

←*π ValueIteration(M ,ε)
/* Compose, execute the workflow, and gather responses */

←sponsesRe Compose&ExecuteWorkflow(0
* , sπ)

/* Revise the MDP using Bayesian learning */
for all Ss ∈ , Aa ∈ do
 Update),|(asT ⋅ to),|(' asT ⋅ by utilizing a
 Bayesian learning algorithm and data in),(Re assponses

 end for
 MM ← with T replaced by 'T
 until σµ ≤

∞
)',(TT /* µ measures the distance */

 /* between two prob. dist. */
end algorithm

Figure 8: Algorithm for interleaving executions of the workflow and Bayesian revision of the
manufacturer's estimates of "ground truth". Manufacturer's workflow may change as his estimates
change.

Our Bayesian learning algorithm is rather simple, and has its roots in (Spiegelhalter,

Dawid, Lauritzen, & Cowel, 1993). The algorithm maintains an experience counter,

exper, initialized to 1, for each value of a random variable. During execution, when a

Web service invocation, a , causes some random variable(s), X , to change its value from

x to 'x , the experience associated with the new value is incremented by 1. The updated

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

probability,),|'(' xXaxXT == , for that value is calculated from the prior probability,

),|'(xXaxXT == , as

'exp
1exp),|'(

:),|'('
er

erxXaxXT
xXaxXT

+×=====

 where exper' is the incremented counter. In order to make the probability distribution

over X sum to 1, probabilities of rest of the values of X are updated in the following

manner:

'exp
exp),|(

:),|('
er

erxXayXT
xXayXT

×=====

The example given below, illustrates our learning process.

Example 2 Let us apply the Bayesian learning algorithm outlined above to update the

probability distribution over the random variable, Inventory Availability (X). The

����������	� initially assigns a uniform probability distribution to the random variable.

We assume that on invoking the Web service, � � 	�� � ��� 	��
 �� � � ����� (�), a positive

response is obtained, and Inventory Availability is assigned Yes. The updated

probability distribution,),|(' UnknownXaT =⋅ , is:

67.0
2

1133.0
:),|(' =+×=== UnknownXaYesXT

165.0
2

133.0
:),|(' =×=== UnknownXaNoXT

165.0
2

133.0
:),|(' =×=== UnknownXaUnknownXT

'T becomes the new prior for the next Bayesian learning phase.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

EXPERIMENTAL RESULTS

We empirically measured the performance of our Execute&Learn algorithm, shown in

Figure 8. In particular, we were interested in knowing the speed of convergence of the

����������	�'s estimated model probabilities to the true probabilities.

For the experimental analysis, we utilized a factored MDP representation of the supply

chain scenario, as illustrated in Example 1. Since our objective is to measure the speed of

convergence of the learning algorithm, we assumed knowledge of the true probabilities

that the ����������	� is attempting to learn. Our methodology consisted of running a

single pass of the outer loop in the Execute&Learn algorithm, followed by measuring

the distance between the updated estimates and the true probability distributions. We call

a single pass through the outer loop of the Execute&Learn algorithm, an episode. In

order to measure the distance between probability distributions, we require a metric, µ .

We used Kullbach Leibler Divergence (KLD), also known as relative entropy, as the

metric for measuring the distance between two probability distributions.

Definition 2 (Kullbach-Leibler Divergence (KLD)) The KLD between two probability

distributions, p and q , is defined as:

)(
)(

log)(:)||(2 xq
xp

xpqpD
x
�=

Note that KLD is not a true metric. Specifically, it is asymmetric and does not obey the

triangle inequality, though it is non-negative. Furthermore, 0)||(=qpD if qp = .

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

 (a) (b)
 Figure 9: Plots displaying the performance of Bayesian learning of distributions over (a) Inventory
Availability (b) Preferred Supplier Availability. The first estimate converges much more quickly
because the action is preformed more often per episode.

The performance plots are displayed in Figure 9. Our procedure for generating these plots

involved executing an episode of workflow generation using current probability estimates

followed by Bayesian learning; measuring the KLD between the estimated probability

distribution and the true distribution, for each random variable after invoking the

appropriate Web service; and plotting the KLD value. Figure 9.(a) shows the plot of three

independent runs of learning the probability distribution over the random variable

Inventory Availability, measured over 300 episodes. Clearly, after initial fluctuations,

the estimated probabilities have almost converged to the true ones. Notice that

convergence has almost been attained by the 100th episode. In Figure 9.(b), we show the

plot of three independent runs for the probability distribution over the random variable

Preferred Supplier Availability, over 300 episodes. In this case, even after 300

episodes, the distribution is yet to converge, exhibiting a large KLD variance in all the 3

runs. We observed that in several workflows, the Web service � � 	�� � � �	�	��	� �

� �� � �
	��� ����� was not invoked, since the order was satisfied by the
�� 	��
 �� itself.

Subsequently, few episodes effected a Bayesian update of the distribution over Preferred

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

Supplier Availability thereby slowing down its convergence. When the same experiment

was carried out over 500 episodes, KLD almost converges to zero (as expected).

Our experiments provide two important conclusions. First, the experiments validate our

hypothesis that the Bayesian learning approach is effective for model learning. Second,

the results reveal an important observation that during learning, models of events less

likely to be observed take more runs to converge. This is a natural result of our use of

maximum entropy to initialize the model and the structure of the Markov model. It has

the beneficial effect that it tends to focus information gathering on the most relevant

states and provides a mechanism for gradually reducing exploration as probabilities

converge.

RELATED WORK

Laukkanen and Helin (Laukkanen & Helin, 2003) outline four distinct steps for

composing Web services based workflows. These include identifying the required

functionality; semantic matching of Web services; creating or updating the workflow;

and executing and monitoring the workflow. In this paper we gave a method for creating,

executing and adapting the workflow to dynamic environments. Our method deems

monitoring of workflows for unexpected behavior, unnecessary. A separate paper (Doshi,

Goodwin, Akkiraju, & Roeder, 2004) presents our semantic matchmaking framework for

discovering Web services.

Other related efforts (Wu, Sirin, Hendler, Nau, & Parsia, 2003; Sheshagiri, desJardins, &

Finin, 2003; Carman, Serafini, & Traverso, 2003) investigate the application of classical

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

STRIPS-style planning for choreographing Web services. However, these methods

assume a static environment with deterministic Web services outcomes. Recognizing the

limited scope of classical planning, (Martinez & Lesperance, 2004) takes the previous

approach a step further by utilizing a conditional planning system called PKS to generate

conditional plans for composing Web services. In (McDermot, 2002), PDDL, a language

for defining classical planning problems, is extended for application to composing Web

services. Though these efforts realize the need for modeling non-determinism of Web

services, they do not consider long term optimality while constructing the plans.

Furthermore, classical planning exhibits a computational complexity of at least NP-

Complete, and in some cases even PSPACE-Complete (Bylander, 1991). In contrast, our

method for generating workflows is P-Complete (Papadimitriou & Tsitsiklis, 1987), and

efficiently models the stochastic nature of Web services thereby producing robust

workflows.

A divergent approach to composing workflows consists of assuming the presence of

partial or abstract workflows, and then "filling in the blanks", at run time, either

automatically (Mandel & McIlraith, 2003; Akkiraju, Verma, Goodwin, Doshi, & Lee,

2004), or interactively from a user (Kim, Gil, & Spraragen, 2004). A similar vein of work

is (Srivastava & Koehler, 2004) which puts forth workflow composition as a two stage

cyclic process: Construct an abstract workflow using planning techniques; instantiate and

execute the workflow while simultaneously monitoring it for optimization purposes.

Such approaches tend to enjoy greater acceptance by virtue of their involvement of the

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

end user; however, the question of how to optimally construct the partial or abstract

workflows remains open and is the target of our work in this paper.

The problem of composing adaptive workflows has also received some attention recently.

One line of work (Buhler & Vidal, 2003) adopts a multi-agent perspective to adaptive

workflow composition and suggests the utilization of standard workflow languages for

multi-agent coordination. However, this work is introductory, and has not been described

in sufficient detail to allow for implementation.

DISCUSSION

In this paper, we have presented a novel policy-based approach for dynamically

composing Web services resulting in workflows. Our primary focus has been on

assembling the workflow at an abstract level, ignoring the implementation-level details.

We believe that our work is novel in two respects: (1) Instead of ignoring the non-

determinism inherent in real-world Web services, we have utilized a stochastic

optimization framework, namely Markov decision processes that permit us to model this

uncertainty and reason with it. Furthermore, MDPs allow us to associate a measure of

quality with each workflow, thereby facilitating selection of the optimal one. By

efficiently generating policies, they produce workflows that are tolerant of service

failures and uncertainties. (2) We have interleaved workflow generation and execution

with model learning, thereby acknowledging that the true stochastic information ("ground

truth") may not be accurately known a 'priori. Through empirical experiments, we have

demonstrated the effectiveness of our Bayesian learning algorithm for learning the true

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

probability models. The net result is that our method generates robust and adaptive

workflows.

As part of future work we are testing the scalability of our method to composing large

complex workflows. As one aspect of this work, we are using hierarchical MDPs to

generate nested workflows. The top level MDPs in a hierarchical MDP framework

utilizes abstract actions that are invocations of lower level MDPs. Such an approach will

allow a hierarchical representation of workflows, in which higher level workflows invoke

lower level ones as part of their execution.

REFERENCES

Akkiraju, R., Verma, K., Goodwin, R., Doshi, P., & Lee, J. (2004). Executing abstract
web process flows. In Workshop on Planning and Scheduling for Web and Grid services,
ICAPS, Whistler, Canada.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., &
Roller, D. (2003). Business process execution language for web services. version 1.1.
Tech. rep., IBM.

Bellman, R. (1957). Dynamic Programming. Dover Publications.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy
construction. In Proceedings of the International Joint Conference on Artificial
Intelligence.

Buhler, P. A., & Vidal, J. M. (2003). Adaptive workflow enactment = web services +
agents. In International Conference on Web Services.

Bylander, T. (1991). Complexity results for planning. In Proceedings IJCAI 12, pp.
274.279. IJCAII.

Carman, M., Serafini, L., & Traverso, P. (2003). Web service composition as planning. In
Workshop on Planning for Web Services, ICAPS, Trento, Italy.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

Doshi, P., Goodwin, R., Akkiraju, R., & Roeder, S. (2004). Parameterized semantic
matchmaking for workflow composition. Tech. rep. RC23133(W0403-026), IBM
Research.

IBM (2002). Business process execution language for web services java runtime.
http://www.alphaworks.ibm.com/tech/bpws4j.

Kim, J., Gil, Y., & Spraragen, M. (2004). A knowledge-based approach to interactive
workflow composition. In Workshop on Planning and Scheduling for Web and Grid
services, ICAPS, Whistler, Canada.

Laukkanen, M., & Helin, H. (2003). Composing workflows of semantic web services. In
Workshop on Web Services and Agent-based Engineering, AAMAS, Melbourne,
Australia.

Mandel, D., & McIlraith, S. (2003). Adapting bpel4ws for the semantic web: The bottom-
up approach to web service interoperability. In Second International Semantic Web
Conference, Sanibel Island, Florida.

Martinez, E., & Lesperance, Y. (2004). Web service composition as a planning task:
Experiments using knowledge based planning. In Workshop on Planning and Scheduling
for Web and Grid services, ICAPS, Whistler, Canada.

McDermot, D. (2002). Estimated regression planning for interactions with web services.
In AI Planning Systems Conference, Toulouse, France.

Papadimitriou, C. H., & Tsitsiklis, J. N. (1987). The complexity of markov decision
processes. Mathematics of Operations Research, 12(3), 441 -- 450.

Pineau, J., & Thrun, S. (2002). An integrated approach to hierarchy and abstraction for
pomdps. Tech. rep. CMU-RI-TR-02-21, CMU.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley series in probability and mathematical statistics. Wiley-
Interscience.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (Second
Edition). Prentice Hall.

Sheshagiri, M., desJardins, M., & Finin, T. (2003). A planner for composing services
described in daml-s. In Workshop on Planning for Web Services, ICAPS, Trento, Italy.

Spiegelhalter, D., Dawid, A., Lauritzen, S., & Cowell, R. (1993). Bayesian analysis in
expert systems.

International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005

Srivastava, B., & Koehler, J. (2004). Planning with workflows : An emerging paradigm
for web service composition. In Workshop on Planning and Scheduling for Web and Grid
services, ICAPS, Whistler, Canada.

Tatman, J. A., & Shachter, R. D. (1990). Dynamic programming and influence diagrams.
IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 365.379.

Wu, D., Sirin, E., Hendler, J., Nau, D., & Parsia, B. (2003). Automatic web services
composition using shop2. In Workshop on Planning for Web Services, ICAPS.

