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Abstract 
The advent of Web services has made automated workflow composition relevant to Web 
based applications. One technique that has received some attention, for automatically 
composing workflows is AI-based classical planning. However, workflows generated by 
classical planning algorithms suffer from the paradoxical assumption of deterministic 
behavior of Web services, then requiring the additional overhead of execution monitoring 
to recover from unexpected behavior of services due to service failures, and the dynamic 
nature of real-world environments. To address these concerns, we propose using Markov 
decision processes (MDPs), to model workflow composition. To account for the 
uncertainty over the true environmental model, and for dynamic environments, we 
interleave MDP-based workflow generation and Bayesian model learning. Consequently, 
our method models both, the inherent stochastic nature of Web services, and the dynamic 
nature of the environment. Our algorithm produces workflows that are robust to non-
deterministic behaviors of Web services and that adapt to a changing environment. We 
use a supply chain scenario to demonstrate our method and provide empirical results. 
 

INTRODUCTION 
 
As service oriented architectures become more widely deployed, it will become more 

common for enterprises to provide a Web services based interface to their core business 
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systems. The task of business process integration and management (BPIM) will then 

involve linking together both intra-enterprise and inter-enterprise services1 to achieve the 

desired business objectives. As we illustrate in Figure 1, the workflows that arise out of 

BPIM will be composed of invocations of Web services based interfaces of the enterprise 

business systems.  

 

 

Figure 1: BPIM Layer in Enterprise IT Infrastructure 

 
Prevalent techniques for BPIM and the analogous workflow composition problem are 

time consuming and often involve the use of custom and proprietary technology for 

connecting business partners. Such techniques often produce inflexible workflows, which 

are expensive to maintain. The advent of Web services has the potential to significantly 

reduce the cost by introducing standard protocols and helping to automate the process. 

Specifically, the ability to dynamically discover and bind to Web services using Web 

services discovery mechanisms facilitate automated workflow compositions2. 

 

                                                 
1 Intra-enterprise and inter-enterprise service integration are often called Enterprise Application Integration 
(EAI) and Business to Business (B2B), respectively. 
2Workflow composition using Web services is sometimes also called Web services choreography.  
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If we view workflow composition as a goal-oriented process, AI-inspired planning 

techniques appear suitable for the task. Preliminary efforts in this respect (Wu, Sirin, 

Hendler, Nau, & Parsia, 2003; Sheshagiri, desJardins, & Finin, 2003; Carman, Serafini, 

& Traverso, 2003) utilize classical STRIPS-style planning algorithms and their variants 

that assume deterministic behavior of Web services.  These efforts represent early steps 

in automating the workflow composition process; however they are limited in several 

ways. Classical planning algorithms do not consider the inherent uncertainty in Web 

services behaviors while generating the workflow.  They assume a static environment and 

do not present a principled method to manage workflows in dynamic environments, and 

they do not include a method for selecting between candidate workflows. 

 

In this paper, we propose using decision-theoretic planning to automate Web services 

based workflow composition. Decision-theoretic planning provides a principled method 

to generate robust workflows, while simultaneously relaxing many of the unrealistic 

assumptions characterizing classical planning algorithms. Specifically, decision-theoretic 

planning formalisms model the uncertainty present in the process, and produce a plan that 

optimally balances the expected risks and rewards. Decision-theoretic planning is based 

on the widely accepted Kolmogorov axioms of probability and the axiomatic utility 

theory.  In this paper, we utilize a decision-theoretic planning formalism called Markov 

decision processes (MDPs) (Puterman, 1994; Russell & Norvig, 2003) to model the 

problem of workflow composition. Our method models both, the stochastic nature of 

services, and the dynamic nature of the environment producing workflows that are robust 
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and adaptive. The solution of a MDP produces a policy that optimally3 guides a stateful 

workflow towards its goal, based on the current model of the dynamic environment. We 

assume that neither is the true model known a ' priori nor is it static.  To deal with the 

lack of prior information and the possibly changing environment, we intersperse policy 

computation with Bayesian model learning. Our approach allows the quality of the 

generated workflows to gradually improve as better models are learned. Our focus in this 

paper is to automatically establish the workflow logic and avoid concentrating on the 

implementation details. Though, in this paper, we have selected a motivating scenario 

that produces linear workflows only, our method is applicable for generating workflows 

of any structure. Additionally, as we mention later, complementary formalisms such as 

hierarchical MDPs (Pineau & Thrun, 2002), provide an analogous method for generating 

nested workflows that are suitable for large complex scenarios. One focus of our future 

work is to explore the scalability of our method and utilization of such additional relevant 

techniques. 

 

This paper is structured in the following manner. In the next section, we briefly review 

Markov decision processes. We then present our motivating scenario in the section that 

follows. This scenario is used as a running example for rest of the paper. Thereafter, we 

demonstrate the application of MDPs to generating workflows. The ensuing two sections 

focus on our model learning approach and empirical results, respectively. Finally, we 

discuss the prior related work, and conclude this paper with a discussion. 

 
 

                                                 
3 Optimality may be measured with respect to expected cost of executing the actions of the workflow. 
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BACKGROUND: MARKOV DECISION PROCESSES 
 
In this section, we present a brief exposition on Markov decision processes (MDP). In 

particular, we introduce only the concepts that are relevant to our work, and refer the 

interested reader to (Puterman, 1994) for more details.  

 

A MDP models the decision problem as inherently stochastic, sequential and fully 

observable. Solution to a MDP produces a policy or a "universal plan". A policy assigns 

to each state of the world, an action that is expected to be optimal over the period of 

consideration. Thus, if an agent has a policy, then no matter what the outcome of any 

action is, the agent will always know what to do next. We formally define an MDP 

below. 

 

Definition 1 (Markov Decision Process (MDP)) A Markov decision process is a tuple, 

( )HCTASM ,,,,=  where  

• S  is the set of all possible states;  

• A  is the set of all possible actions;  

• T  is a transition function, )(: SAST ∆→× , which specifies the probability 

distribution over the next states given the current state and action;  

• C  is a cost function, ℜ→× ASC : , which specifies the cost of performing each 

action from each state; and   

• H  is the period of consideration over which the plan must be optimal, also 

known as the horizon, ∞≤< H0 . 
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The transition function as defined in a MDP is Markovian, that is, the probability of 

reaching the next state depends only on the current state and action, and not on the 

history of earlier states. Inclusion of the transition function allows MDPs to model and 

reason with non-deterministic (uncertain) actions. Furthermore, the horizon may be either 

finite or infinite.  If a MDP is solved over a finite horizon, then the resulting policy is 

non-stationary, since the best action to perform may depend on the remaining time.  For 

such problems, the solution is a sequence of policies, indexed by time, which specifies 

the optimal action to perform in each state.  The optimal action can vary as the finite 

horizon is approached. If the horizon is infinite, then the resulting policy is stationary 

over time. 

 

Standard MDP solution techniques for arriving at an optimal policy revolve around the 

use of stochastic dynamic programming (Puterman, 1994) for calculation of the optimal 

policy. Bellman (Bellman, 1957), via his Principle of Optimality, showed that the 

stochastic dynamic programming equation, Equation (1), is guaranteed to find the 

optimal policy for the MDP. One standard MDP solution technique, called Value 

Iteration, involves iterating over Equation (1)-- calculating the expected value of each 

state -- until the value differential for each state reduces below a given threshold4.  
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4 Note that the value function provably converges over time. 
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where the function, ℜ→SV n :  quantifies the long-term negative value, or cost, of 

reaching each state with n  actions remaining to be performed. 

 

Once we know the expected cost associated with each state of the workflow, the optimal 

action for each state is the one which results in the minimum expected cost. 

 (2) 

 

 

In Equation (2), *π is the optimal policy which as we mentioned before, is simply a 

mapping from states to actions, AS →:*π . We show the algorithm for computing the 

optimal policy in Figure 2. 

 

Often, the state of a world may be factored into a feature set. Each state is then simply a 

conjunction of the feature values. In such worlds, each action typically affects only a 

subset of the features. The MDPs used to model such worlds are called factored MDPs 

(Boutilier, Dearden, & Goldszmidt, 1995) and are best represented and solved using 

graphical formalisms called dynamic influence diagrams (DID) (Tatman & Shachter, 

1990; Russell & Norvig, 2003). We show a generic two-time slice DID in Figure 3.  
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Algorithm: ValueIteration( M ,ε ) 
Input:       M   /* MDP to be solved */ 

                         ε   /* max. allowed error in value of each state*/ 
Output:   *π   /*ε -optimal policy */ 
 
 /* Compute the value function */ 
Initialize ssV ∀← 0)('  
repeat 

for all Ss ∈  do 

  
�
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�
� += �

∈∈
Ss
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'

)'('),|'(),(min)( γ  

end for 

∞
−← 'VVδ  

VV ←'  

 until 
γ

γεδ −< 1  

/* Obtain the optimal policy from the value function */ 
for all Ss ∈  do 
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      end for  
return *π  

end algorithm 
 

Figure 2: The Value Iteration algorithm for solving the MDP and computing the infinite horizon 
optimal policy. 

 
 

Figure 3: A generic 2-time slice dynamic influence diagram for representing factored MDPs. A 
dynamic programming algorithm for solving DIDs resulting in the optimal policy, is given in 
(Tatman & Shachter, 1990). 
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MOTIVATING SCENARIO 

In order to illustrate the composition of workflows using Web services we present an 

example motivating scenario. The scenario will serve as a running example for the rest of 

the paper. 

 

Example Scenario  A ����������	� receives an order to deliver some merchandise to a 

�	��
�	�. The ����������	� may satisfy the order in one of several ways. He may satisfy 

the order from his own 
�� 	�� ��  if sufficient stock exists. The ����������	� may 

request the required parts from a � �	�	��	� � � �� � �
	� in order to produce the goods 

needed to satisfy the order. The ����������	� may also search for a new � �� � �
	� of 

parts, or buy them on the Spot�� ��� 	�.  A costing analysis reveals that the ����������	� 

will incur least cost if he is able to satisfy the order from his own 
�� 	�� �� . The 

����������	� will incur increasing costs as he tries to fulfill the order by procuring parts 

from his � �	�	��	� �� �� � �
	�, a new � �� � �
	�, and the � �  ��� ��� 	�.   

 

 
Figure 4: Collaboration diagram showing the interactions between the business partners in our 
motivating scenario. We have used example probability values to aid understanding. 
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In Figure 4, we illustrate our motivating scenario graphically.  Clearly, the ����������	� 

may choose from several candidate workflows.  For example, the ����������	� may 

initially attempt to satisfy the order from his 
�� 	�� �� . If he is unable to do so, he may 

resort to ordering parts from his � �	�	��	� � � �� � �
	�. Another potential workflow may 

involve bypassing the ����������	� check, since the ����������	� strongly believes 

that his 
�� 	�� ��  will not satisfy the order. He may then initiate a status check on his 

� �	�	��	� �� �� � �
	�� These example workflows reveal two important factors for selecting 

the optimal one. First, the ����������	� must possess some estimate of certainty (belief) 

with which his order will be satisfied by his 
�� 	�� �� , � �	�	��	� � � �� � �
	�, � �� � �
	�, 

and the � �  ��� ��� 	�. One source of these estimates is historical data on past transactions 

maintained by the ����������	�. Suitable extrapolation techniques allow the estimates 

to be projected to the current time. As an alternate approach we may assume that the 

����������	� is initially ignorant about these estimates, and gradually learns them from 

his interactions. We adopt the latter approach in this paper. Second, at each stage, rather 

than greedily selecting an action with the least cost, the ����������	� must select the 

action that is expected to be optimal over the long term. 

 
WORKFLOW COMPOSITION USING MDPs 

 
Workflow composition in the context of Web services involves discovering and binding 

to Web services that collectively implement the required process functionality. If we 

view workflow composition as a goal-driven problem, then AI based planning algorithms 

appear suitable candidates for automatically composing workflows. However, classical 

planning assumptions do not hold as well in this domain as they might first appear to.  It 
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is not the case that Web service invocations can be modeled as deterministic.  Similarly, 

simply finding a plan that achieves a goal is insufficient.  Workflow composition needs to 

take into account not only the cost and time needed to accomplish a task, but also the 

factors included in service level agreements.  These aspects of the problem are better 

addressed by decision-theoretic planning techniques such as MDPs. 

 

In order to demonstrate composing workflows using MDPs, let us model the example 

����������	� scenario given in the previous section, as a factored MDP. 

 

Example 1  

• The state of the workflow is factored and is captured by the random variables 

- Inventory Availability, Preferred Supplier Availability, New Supplier 

Availability, Spot Market Availability, Order Assembled, and Order 

Shipped. A state is then a conjunction of assignments of either Yes, No, or 

Unknown to each random variable. Appropriate links between the random 

variables are used to capture any constraints or dependencies.  

• Actions are Web service invocations, A ={� � 	�� ���� 	�� �� �� ����� , � � 	�� �

� �	�	��	� � � �� � �
	�� � ����� , � � 	�� � � 	� � � �� � �
	�� � ����� , � � 	�� � � �  ��

� ��� 	��� ����� ,  � � � 	�� �	�� �� 	�, � � 
� �� �� 	�}.  

• The transition function, T , models the non-deterministic effect of each Web 

service invocation on some random variable(s). For example, invoking the Web 

service � � 	�� � ��� 	�� �� � � �����  will cause Inventory Availability to be 

assigned Yes with a probability of T (Inventory Availability=Yes | � � 	�� �
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��� 	�� �� � � ����� , Inventory Availability=Unknown), and assigned No or 

Unknown with a probability of (1-T (Inventory Availability=Yes | � � 	�� �

��� 	�� �� �� ����� , Inventory Availability=Unknown)).  

• The cost function, C , prescribes the cost of each Web service invocation, to 

the ����������	�. The costs may be obtained from the service-level agreements 

between the different enterprises in the supply chain. 

• We let ∞→H  (a large value at which convergence is attained) which implies 

that the ����������	� is concerned with getting the most optimal (cost 

efficient) workflow possible.  

 

Once our ����������	� has modeled his workflow composition problem as a MDP, he 

may apply standard MDP solution techniques, described previously, to arrive at an 

optimal policy.  

 

The optimal policy, *π , as we mentioned before, is simply a mapping from states to 

actions, AS →:*π . The reader at this point may wonder that how does an optimal 

policy such as *π  translate to an optimal workflow for the ����������	�. In Figure 5, 

we give an algorithm that addresses this question. It takes the optimal policy, and the 

starting state of the workflow as input, and interleaves composition and execution of the 

workflow. Since no information is available at the beginning of the process, the starting 

state is a conjunction of all random variables assigned the value Unknown. 
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In addition to providing a guarantee of optimality, MDPs admit efficient solution 

techniques. In particular, the task of computing the optimal finite horizon policy of a 

MDP has been proved to be P-Complete (Papadimitriou & Tsitsiklis, 1987). Furthermore, 

we contend that employing a policy for workflow generation produces robust workflows. 

Since a policy is a mapping from each state to an action, the policy will always prescribe 

an optimal Web service to execute at any state.  For example, if a Web service fails, then 

the state of the workflow remains unchanged. In such a situation, the finite horizon policy 

may prescribe invoking either the same Web service as before, or a completely different 

one, depending on which action is optimal then. Thus, our policy-based method for  

 

Algorithm: Compose&ExecuteWorkflow( *π , 0s ) 

Input:   *π    /* policy from solving the MDP */ 
      0s   /* start state of the workflow */ 

Output:     RS    /* Web service invocation responses */ 
 

0ss ←  
while  ≠s goal state 

     )(* sa π←  
Execute Web service a  

       Get response of a  
Store response: ←),( asRS response  
Using ),( asRS  construct next state, 's  

     'ss ←  
end while 
return  RS  

end algorithm 
 

Figure 5: Algorithm for translating a policy obtained by solving the MDP, into a workflow. 

 
 
generating workflows is capable of optimally recovering from Web service failures. In 

contrast, execution of traditional classical plans needs to be monitored for unexpected 
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interaction between the plan and the environment, and there is no fixed method for 

handling exceptions that may arise.  

  
 

Figure 6: Variations in optimal workflow execution as responses to Web service invocations change. 
Two distinct workflows arise, (a) and (b), when response to a Web service invocation changes. (c) 
represents an optimal workflow execution in the presence of Web service failure.  When Web service 
invocation � � 	�� �� �	�	��	� �� �� � �
	��� ������ � 	�� �� �	�	��	� �� �� � �
	��� ������ � 	�� �� �	�	��	� �� �� � �
	��� ������ � 	�� �� �	�	��	� �� �� � �
	��� �����  fails, returning Unknown, the workflow suggests 
invoking it one more time, and then checks the Spot Market. 
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In Figure 6, we present three example workflow traces that arise when the ����������	� 

uses the Compose&ExecuteWorkflow algorithm in Figure 5 to compose and execute his 

workflow. As expected, the workflow changes as responses to Web service invocations 

change. Specifically, if the ����������	� �  
�� 	�� ��  is able to satisfy the order, then he 

will assemble the order and ship it to the retailer (Figure 6.(a)). However, if the 
�� 	�� ��  

is unable to satisfy the order (Figure 6.(b)), the ����������	� checks his � �	�	��	� �

� �� � �
	�'s status. On receiving a positive response, the ����������	� assembles the 

order using parts supplied by his � �	�	��	� �� �� � �
	�, and ships the order to the retailer. 

The third workflow, Figure 6.(c), is realized in the event of a Web service failure. When 

the 
�� 	�� ��  is unable to satisfy his order, the ����������	� invokes the Web service to 

check his � �	�	��	� � � �� � �
	�'s status, which fails, returning Unknown5. The 

����������	� then performs another check on the � �	�	��	� �� �� � �
	�'s status, since the 

long term expected cost of procuring parts from the � �	�	��	� �� �� � �
	� is still less than 

any other alternative. A repeated failure of the Web service makes the ����������	� 

check the � �  ��� ��� 	�.  

 

The current industry standard for representing workflows is BPEL4WS (Andrews, 

Curbera, Dholakia, Goland, Klein, Leymann, Liu, & Roller, 2003). BPEL4WS which 

grew out of Microsoft's XLANG and IBM's WSFL specifications, is receiving 

widespread recognition in industry. To integrate our method with industry standards, we 

have developed a tool for automatically converting a policy into a workflow in 

BPEL4WS specification using the BPWS4J API (IBM, 2002). The resulting BPEL4WS 

                                                 
5 Since a failure of the Web service precludes the ����������	� from knowing the status of the � �	�	��	� �
� �� � �
	�'s inventory, Unknown is returned. An alternative way to model service failure is to include it in 
the state of process. 
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flow can be executed in the BPEL engine that comes bundled with IBM's Websphere 

application suite. 

 
 

BAYESIAN MODEL LEARNING 
 
In an earlier section, we indicated that in order to select the optimal workflow from 

several candidate ones, the ����������	� must possess some estimate of certainty with 

which his requests will be satisfied. These estimates are a measure of the non-

determinism of the underlying processes, exposed as Web services, and manifest 

themselves in the transition function, T , of the MDP.  Clearly, the optimal policy, *π , is 

dependent on these estimates, and the policy, and consequently the workflow changes as 

the probabilities vary. 

 

Figure 7 shows how the ����������	� �  optimal workflow depends on his probability 

estimates. The optimal workflow changes from the one in Figure 7.(a) to the one in 

Figure 7.(b) as the ����������	� �  estimate of the probability that his inventory can 

satisfy his request drops. If this estimate is sufficiently low, then at the start state, the 

expected long term cost of checking the 
�� 	�� ��  (computed using the expression in 

parenthesis in Equation (2)) exceeds the expected long term cost of checking the 

� �	�	��	� � � �� � �
	�'s availability. In such an event, the ����������	� �  optimal 

workflow changes as shown in the figure. 

 

 



International Journal of Web Services Research, 2(1): 1-17, Jan-March 2005 

 
 

Figure 7: When T(Inventory Availability=Yes | Check Inventory Status, Inventory 
Availability=Unknown) drops below some threshold, the optimal workflow changes from (a) to (b), 
because the inventory check takes time and incurs costs that are not warranted given the low 
probability that  inventory will be available for use. 

 
 
A frequent concern with model-based methods such as MDPs is, where do the model 

probabilities come from? In this part of our work, we take the view that the 

����������	� is initially ignorant about these probabilities, and he attempts to learn 

them through his interactions with the environment.  In a true Bayesian manner, the 

����������	� initially assigns equal probabilities to each response of a Web service 

invocation. An initial workflow is generated and executed using the algorithm in Figure 

5. Using a Bayesian learning algorithm, Web service invocation responses obtained 

during workflow execution are used to update the ����������	� �  estimates of "ground 

truth".6 In this manner, we interleave workflow generation and model learning. We give 

the algorithm in Figure 8. Convergence arises out of the proposition that updating the 

probabilities using a Bayesian learning algorithm leads almost surely to the true 

probabilities. Thus, the ����������	� �  workflows slowly adapt themselves to the 

                                                 
6 This form of learning is frequently called parameter learning in Bayesian statistics. 
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ground truth through repeated interactions with the environment. In the unusual case of a 

dynamic environment (the true probabilities are varying), model learning allows the 

workflow to "keep up" with the changing environment.  

 
 
Algorithm: Execute&Learn( M , 0s , ε , σ ) 

Input: M   /* MDP to be solved */ 
 0s   /* start state */ 

        ε   /* error bound for value */ 
      σ    /* error bound for probability estimate */ 
 

repeat 
 /* Solve the MDP */ 

←*π ValueIteration( M ,ε ) 
/* Compose, execute the workflow, and gather responses */ 

←sponsesRe Compose&ExecuteWorkflow( 0
* , sπ ) 

/* Revise the MDP using Bayesian learning */ 
for all Ss ∈ , Aa ∈  do 
 Update ),|( asT ⋅  to ),|(' asT ⋅   by utilizing a  
 Bayesian learning algorithm and data in ),(Re assponses  

  end for 
  MM ← with T replaced by 'T   
 until σµ ≤

∞
)',( TT   /* µ measures the distance */ 

 /* between two prob. dist.   */ 
end algorithm 
 

Figure 8: Algorithm for interleaving executions of the workflow and Bayesian revision of the 
manufacturer's estimates of "ground truth". Manufacturer's workflow may change as his estimates 
change. 

 

Our Bayesian learning algorithm is rather simple, and has its roots in (Spiegelhalter, 

Dawid, Lauritzen, & Cowel, 1993). The algorithm maintains an experience counter, 

exper, initialized to 1, for each value of a random variable. During execution, when a 

Web service invocation, a , causes some random variable(s), X , to change its value from 

x  to 'x , the experience associated with the new value is incremented by 1. The updated 
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probability, ),|'(' xXaxXT == , for that value is calculated from the prior probability, 

),|'( xXaxXT == , as 

 

'exp
1exp),|'(

:),|'('
er

erxXaxXT
xXaxXT

+×=====  

 
 where exper' is the incremented counter. In order to make the probability distribution 

over X  sum to 1, probabilities of rest of the values of X  are updated in the following 

manner: 

 

'exp
exp),|(

:),|('
er

erxXayXT
xXayXT

×=====  

 
The example given below, illustrates our learning process. 

 

Example 2  Let us apply the Bayesian learning algorithm outlined above to update the 

probability distribution over the random variable, Inventory Availability ( X ). The 

����������	� initially assigns a uniform probability distribution to the random variable. 

We assume that on invoking the Web service, � � 	�� � ��� 	�� �� � � �����  (�), a positive 

response is obtained, and Inventory Availability is assigned Yes. The updated 

probability distribution, ),|(' UnknownXaT =⋅ , is: 

 

67.0
2

1133.0
:),|(' =+×=== UnknownXaYesXT  

165.0
2

133.0
:),|(' =×=== UnknownXaNoXT  

165.0
2

133.0
:),|(' =×=== UnknownXaUnknownXT  

 
'T  becomes the new prior for the next Bayesian learning phase. 
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EXPERIMENTAL RESULTS 

 
We empirically measured the performance of our Execute&Learn algorithm, shown in 

Figure 8. In particular, we were interested in knowing the speed of convergence of the 

����������	�'s estimated model probabilities to the true probabilities.  

 

For the experimental analysis, we utilized a factored MDP representation of the supply 

chain scenario, as illustrated in Example 1. Since our objective is to measure the speed of 

convergence of the learning algorithm, we assumed knowledge of the true probabilities 

that the ����������	� is attempting to learn. Our methodology consisted of running a 

single pass of the outer loop in the Execute&Learn algorithm, followed by measuring 

the distance between the updated estimates and the true probability distributions.  We call 

a single pass through the outer loop of the Execute&Learn algorithm, an episode.  In 

order to measure the distance between probability distributions, we require a metric, µ . 

We used Kullbach Leibler Divergence (KLD), also known as relative entropy, as the 

metric for measuring the distance between two probability distributions. 

 
Definition 2 (Kullbach-Leibler Divergence (KLD)) The KLD between two probability 

distributions, p  and q , is defined as: 

)(
)(

log)(:)||( 2 xq
xp

xpqpD
x
�=  

Note that KLD is not a true metric. Specifically, it is asymmetric and does not obey the 

triangle inequality, though it is non-negative. Furthermore, 0)||( =qpD  if  qp = . 
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   (a)      (b)  
 Figure 9: Plots displaying the performance of Bayesian learning of distributions over (a) Inventory 
Availability (b) Preferred Supplier Availability.  The first estimate converges much more quickly 
because the action is preformed more often per episode. 

 
 
The performance plots are displayed in Figure 9. Our procedure for generating these plots 

involved executing an episode of workflow generation using current probability estimates 

followed by Bayesian learning; measuring the KLD between the estimated probability 

distribution and the true distribution, for each random variable after invoking the 

appropriate Web service; and plotting the KLD value. Figure 9.(a) shows the plot of three 

independent runs of learning the probability distribution over the random variable 

Inventory Availability, measured over 300 episodes. Clearly, after initial fluctuations, 

the estimated probabilities have almost converged to the true ones. Notice that 

convergence has almost been attained by the 100th episode. In Figure 9.(b), we show the 

plot of three independent runs for the probability distribution over the random variable 

Preferred Supplier Availability, over 300 episodes. In this case, even after 300 

episodes, the distribution is yet to converge, exhibiting a large KLD variance in all the 3 

runs. We observed that in several workflows, the Web service � � 	�� � � �	�	��	� �

� �� � �
	��� �����  was not invoked, since the order was satisfied by the 
�� 	�� ��  itself. 

Subsequently, few episodes effected a Bayesian update of the distribution over Preferred 
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Supplier Availability thereby slowing down its convergence. When the same experiment 

was carried out over 500 episodes, KLD almost converges to zero (as expected). 

 

Our experiments provide two important conclusions. First, the experiments validate our 

hypothesis that the Bayesian learning approach is effective for model learning. Second, 

the results reveal an important observation that during learning, models of events less 

likely to be observed take more runs to converge. This is a natural result of our use of 

maximum entropy to initialize the model and the structure of the Markov model.  It has 

the beneficial effect that it tends to focus information gathering on the most relevant 

states and provides a mechanism for gradually reducing exploration as probabilities 

converge. 

 
RELATED WORK 

 
Laukkanen and Helin (Laukkanen & Helin, 2003) outline four distinct steps for 

composing Web services based workflows. These include identifying the required 

functionality; semantic matching of Web services; creating or updating the workflow; 

and executing and monitoring the workflow. In this paper we gave a method for creating, 

executing and adapting the workflow to dynamic environments. Our method deems 

monitoring of workflows for unexpected behavior, unnecessary. A separate paper (Doshi, 

Goodwin, Akkiraju, & Roeder, 2004)  presents our semantic matchmaking framework for 

discovering Web services.  

 

Other related efforts (Wu, Sirin, Hendler, Nau, & Parsia, 2003; Sheshagiri, desJardins, & 

Finin, 2003; Carman, Serafini, & Traverso, 2003) investigate the application of classical 
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STRIPS-style planning for choreographing Web services. However, these methods 

assume a static environment with deterministic Web services outcomes. Recognizing the 

limited scope of classical planning, (Martinez & Lesperance, 2004) takes the previous 

approach a step further by utilizing a conditional planning system called PKS to generate 

conditional plans for composing Web services. In (McDermot, 2002), PDDL, a language 

for defining classical planning problems, is extended for application to composing Web 

services.  Though these efforts realize the need for modeling non-determinism of Web 

services, they do not consider long term optimality while constructing the plans. 

Furthermore, classical planning exhibits a computational complexity of at least NP-

Complete, and in some cases even PSPACE-Complete (Bylander, 1991). In contrast, our 

method for generating workflows is P-Complete (Papadimitriou & Tsitsiklis, 1987), and 

efficiently models the stochastic nature of Web services thereby producing robust 

workflows.  

 

A divergent approach to composing workflows consists of assuming the presence of 

partial or abstract workflows, and then "filling in the blanks", at run time, either 

automatically (Mandel & McIlraith, 2003; Akkiraju, Verma, Goodwin, Doshi, & Lee, 

2004), or interactively from a user (Kim, Gil, & Spraragen, 2004). A similar vein of work 

is (Srivastava & Koehler, 2004) which puts forth workflow composition as a two stage 

cyclic process: Construct an abstract workflow using planning techniques; instantiate and 

execute the workflow while simultaneously monitoring it for optimization purposes.  

Such approaches tend to enjoy greater acceptance by virtue of their involvement of the 
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end user; however, the question of how to optimally construct the partial or abstract 

workflows remains open and is the target of our work in this paper. 

 

The problem of composing adaptive workflows has also received some attention recently. 

One line of work (Buhler & Vidal, 2003) adopts a multi-agent perspective to adaptive 

workflow composition and suggests the utilization of standard workflow languages for 

multi-agent coordination. However, this work is introductory, and has not been described 

in sufficient detail to allow for implementation. 

 
DISCUSSION 

 
In this paper, we have presented a novel policy-based approach for dynamically 

composing Web services resulting in workflows. Our primary focus has been on 

assembling the workflow at an abstract level, ignoring the implementation-level details. 

We believe that our work is novel in two respects: (1) Instead of ignoring the non-

determinism inherent in real-world Web services, we have utilized a stochastic 

optimization framework, namely Markov decision processes that permit us to model this 

uncertainty and reason with it. Furthermore, MDPs allow us to associate a measure of 

quality with each workflow, thereby facilitating selection of the optimal one. By 

efficiently generating policies, they produce workflows that are tolerant of service 

failures and uncertainties. (2) We have interleaved workflow generation and execution 

with model learning, thereby acknowledging that the true stochastic information ("ground 

truth") may not be accurately known a 'priori. Through empirical experiments, we have 

demonstrated the effectiveness of our Bayesian learning algorithm for learning the true 
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probability models. The net result is that our method generates robust and adaptive 

workflows. 

 

As part of future work we are testing the scalability of our method to composing large 

complex workflows. As one aspect of this work, we are using hierarchical MDPs to 

generate nested workflows. The top level MDPs in a hierarchical MDP framework 

utilizes abstract actions that are invocations of lower level MDPs. Such an approach will 

allow a hierarchical representation of workflows, in which higher level workflows invoke 

lower level ones as part of their execution. 
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