Dec-AIRL: Decentralized Adversarial IRL for
Human-Robot Teaming

Prasanth Sengadu Suresh
THINC lab, School of Computing
University of Georgia
Athens, GA, USA
ps32611@uga.edu

ABSTRACT

We present a new method for inverse reinforcement learning (IRL)
that allows an agent to learn from expert demonstrations and then
spontaneously collaborate with a human on the same task. We
generalize adversarial IRL (AIRL) to work in a decentralized setting
using a decentralized Markov decision process (Dec-MDP) as the
underlying model. We posit that a Dec-MDP is a better-suited model
for pragmatic multi-agent IRL compared to the multi-agent Markov
decision process (MMDP) or the Markov game, which have been
utilized thus far. This is because the latter models require an agent
to know the global state of the environment, which is impractical in
the real world as it may include agent-specific attributes (e.g. joint
angles) that may not be directly observable by the other agents.
We test our method on two domains: a formative simulated patient
assistance scenario and a summative real-world use-inspired do-
main of sorting onions on a line conveyor. Our method (Dec-AIRL)
significantly improves on the previous techniques in both domains.
These results indicate that a decentralized multi-agent IRL formal-
ism promotes effective teaming in human-robot collaborative tasks.

KEYWORDS
Cobots; Human-Robot Teaming; Learning from observations; IRL

ACM Reference Format:

Prasanth Sengadu Suresh, Yikang Gui, and Prashant Doshi. 2023. Dec-AIRL:
Decentralized Adversarial IRL for Human-Robot Teaming. In Proc. of the
22nd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 — June 2, 2023, IFAAMAS,
9 pages.

1 INTRODUCTION

Inverse reinforcement learning (IRL) [28] is the paradigm of us-
ing demonstrations provided by expert agent(s) to learn complex
task preferences that are often non-trivial to program. It aims to
learn a reward function that provides an accurate representation
of the expert’s preferences. While there is much work on IRL ap-
plied to single agent scenarios, IRL for multi-agent tasks is less
explored [2]. One key application of multi-agent IRL is in human-
robot collaborative settings where the demonstration is provided
by a human-human team, which may then be used by a robot to
learn how to perform the task and actively collaborate with a hu-
man in the shared environment. For instance, consider a produce
processing shed where humans stand across from each other and

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Yikang Gui
THINC lab, School of Computing
University of Georgia
Athens, GA, USA
Yikang.Gui@uga.edu

Prashant Doshi
THINC lab, School of Computing
University of Georgia
Athens, GA, USA
pdoshi@uga.edu

sort produce on a conveyance system by removing the blemished
produce. Is it possible for a cobot to observe and learn to seamlessly
collaborate with the humans on the line?

Toward realizing this, a key challenge is to develop IRL methods
to learn the reward function of a collaborative multi-agent team. In
this regard, recent methods generalize the well-known adversarial
IRL (AIRL) and generative adversarial imitation learning (GAIL) [8,
15] to a multi-agent setting. These include multi-agent AIRL [37, 40]
and its extension to demonstrations with latent variables [13], as
well as Co-GAIL [35] and MA-GAIL [32]. These methods generalize
the Markov decision process (MDP) model of the expert’s behavior
to either the Markov game [20] or the MMDP [4]. However, both
these models require each participating agent to perfectly know
the global state of the system, which may not be practicable. We
illustrate this limitation in the context of produce processing where
the produce is, say onions: the sufficient global state also includes
variables indicating whether an agent has identified the onion as
being blemished or not. While the robot’s sensors facing the human
can assess the onions on the conveyor, this may not align with the
human’s inspection of the onion. As such, some of the variables in
the global state that pertain to the other agent may not be perfectly
determined, and this may lead to adverse interactions such as both
agents reaching for the same onion.

Given this limitation of extant methods, we posit that a decen-
tralized MDP (Dec-MDP) [12], which can be solved to produce a
vector of policies (one for each agent) in which an agent’s actions
are conditioned on its own history of observations, is a more appro-
priate model. Therefore, we present a new generalization of AIRL
to multi-agent settings, which we label as Dec-AlIRL, that ascribes a
Dec-MDP to model the multi-agent collaboration. Dec-AIRL follows
the generator-discriminator architecture where the generator is
modeled as performing RL using centralized training and decen-
tralized execution (CTDE) [39]. It generates trajectories of states
and actions for each agent, which are used by the discriminator to
inversely learn the joint reward function.

We evaluate the performance of Dec-AIRL on two domains and
compare its empirical learned behavior accuracy (LBA) with that of
Co-GAIL and MA-AIRL. The expert trajectories for our simulated
assistive domain comes from a trained RL model. For the realistic
produce-processing domain, we deploy our learn-from-observation
(LfO) pipeline (see Fig. 1) to record and process RGB-D camera
streams of humans engaged in sorting batches of onions on a table.
While Co-GAIL uses an MMDP to model the human-robot collab-
orative problem and assumes access to the global state and the
latent features pertaining to the human behavior, MA-AIRL models
it as a Markov game, which also maps the global state but to each

Figure 1: The end-to-end pipeline of Dec-AIRL. Time-synchronized raw video frames of a 2-person team sorting onions on a
conveyor is input to SA-Net [31], which classifies the state and action. Each agent’s state-action pairs are obtained through
the camera opposite to them observing them sort. These are concatenated to form the global state-action pairs, which is used
as training data for Dec-AIRL. Dec-AIRL uses a centralized critic and decentralized actors to learn a vector of policies. The

decoupled robot policy is used to sort alongside a human.

agent’s action, and obtains a game-theoretic equilibrium as the con-
vergence criterion. Our results show that Dec-AIRL significantly
improves on the accuracy of both Co-GAIL and MA-AIRL mainly
because of the challenge to each agent of inferring the true global
state perfectly. On deploying the learned policy in simulation and
on a physical cobot, we show that a collaborative robot (cobot) is
able to successfully avoid adverse interactions much better than
the baseline policies, as it collaborates with a human.

2 BACKGROUND

In a single agent scenario, IRL models the expert’s environment as
a Markov decision process (MDP) [24], which it solves optimally.
Formally, the MDP of an expert is defined as a tuple (S, A, T, R,
Y> Po), where S is the set of states defining the environment, A is
the expert’s set of possible actions, T : S X A x S — [0, 1] gives
the transition probabilities from any given state to a next state for
each action, R : S X A — R is the reward function modeling the
expert’s reward for performing an action from a state, y € [0, 1) is
the discount factor and py is the initial state distribution. Typically,
the learner is aware of the expert’s S, A, y, po, and T but not R.
Model-free techniques do not require T either. A (stationary) policy
for a MDP is a mapping from states to actions 7 : S — A. Let XF
be the set of expert demonstrations and a complete trajectory X is
given by, X = (s1, a1, 52, az, $3, ..., ST, ag-); where X € XE.

2.1 Review of Adversarial IRL

AIRL builds on the maximum causal entropy framework [41], which
considers an entropy-regularized MDP. Forward RL aims to find the
optimal policy 7* that maximizes the expected entropy-regularized
discounted reward, under z, T, and py:

" = argmax Ex
T =0

-
DUy (st ar) +H<n(.|st>))] .

The distribution of the trajectories derived from the optimal policy

7*(als) has been shown to take the form 7*(als) o ¢Dsope (st:a1)

[14, 41], where:

-
v (r(shay) +H(7r(-|5't)))j .

t'=t

The maximum causal entropy framework parameterizes the reward
functions rg (s, a) but fixes initial state distribution and the dynam-
ics. The structure of the discriminator is adapted from GCL [7]
where the discriminator Dg (X) learns a function fg (X) [8] which at
optimality approximates the expert policy’s advantage function [1].
The softmax policy [11] is given as,

soft soft _ysoft
Ao (s.a) :lee () Vie ©

n(X)=e (1)
. - fo (X)
The discriminator takes the form, Dg(X) = m and the
reward update rule is given as:
Ro(X) < log Dg(X) —log(1 — Dg(X)).)

AIRL minimizes the reverse KL divergence between the learner’s
and expert’s marginal state-action distribution KL(px (s, a)||pexp
(s, a)) since this results in mode-seeking behavior in contrast to
behavior cloning methods that use forward KL divergence with
a mode-covering behavior [10]. One key difference between the
original formulation by Fu et al [8] and our approach is that we
model the reward function as a function of both states and ac-
tions as the disentangled reward learning comes with some strong
assumptions [9, 11, 34].

2.2 Proximal Policy Optimization

Proximal policy optimization (PPO) is the forward rollout method
used by AIRL [8]. PPO improves upon trust-region policy opti-
mization (TRPO) by using a lower-bound on the unclipped ob-
jective. More specifically, TRPO maximizes the policy objective:
L(w) = E; [A’Aﬁ,w]; where A? is the advantage function (general-
ized advantage estimate used in practice) at the current timestep

7, (a ‘st)
— g where
n;’,ld(a’ [st)’

ﬂz)ld is the policy from the previous iteration and w are the weights
for the policy. However, this may lead to an excessively large policy
update [29], and PPO suggests the following policy objective:

and the importance sampling ratio A’ is given as

T

LCLIP () = By |min (1 AL, ,clip(!,1- 1+)AL,]

where LELTP () is the clipped surrogate objective that takes the
minimum of the clipped and unclipped objective to maintain a
pessimistic bound over the final objective. Clipping the importance

sampling ratio removes the incentive for moving A’ outside of
the interval [1 — €, 1 + €]. A% is calculated with respect to the
reward estimates Rg(X) from Eqn 2. We generalize this method to
a decentralized formulation for use with Dec-AIRL.

3 DECENTRALIZED AIRL FOR
HUMAN-ROBOT INTERACTION

This paper presents a novel method that addresses a significant
challenge in human-robot interaction (HRI) scenarios with a shared
workspace where the human’s state is not perfectly observable by
the robot. By introducing a decentralized approach combined with
IRL, we intend to learn not only the task preferences but also conflict
avoidance during interactions from joint expert demonstrations. To
understand this HRI scenario, we start by introducing the problem
setup, then proceed to explain our approach to the problem, and
finally present the Dec-AlIRL algorithm that learns a joint reward
function, whose optimization in a Dec-MDP yields a vector of
policies that simulate the observed behaviors of the agents.

3.1 Interaction Model

We model the observed two-agent interaction as a Dec-MDP [3]
that allows for multiple agents to act in a decentralized way while
still permitting cooperation. A two-agent Dec-MDP is defined using
the following tuple:

DM £ (S,AT,R)

where the global state, S = S; X S;. Here, S; and S; are the locally ob-
served states of the two agents i and j, which when combined yield
the complete global state of the system; A = A; X A; is the set of
joint actions of the two agents; T : SXAXS — [0, 1] is the transition
function of the multi-agent system; and R : S X A — R is the com-
mon reward function. ! Note that the latter is unknown, whereas
rest of the elements of the model are usually known. As such, the
agents know their own local state only, any observable parameters
relevant to the interaction, and can act individually while optimiz-
ing a task-centric common reward [22]. The solution to a Dec-MDP
is a vector of policies, 7* = (ﬁl’.", n}‘.‘), where ni* : S; — A; and analo-
gously for ﬂ;f, If the interactions between the two agents are sparse,
and can occur at some joint states only, we may leverage this do-
main structure to simplify the model. Let St € S be the set of states
where an interaction may occur, and Sy7 = S/St be the remaining
states. Then, we may specify the transition and reward functions as:

Pr(s’|s,a) ifs € St
Pr(s]si, a;) x Pr(s;|sj, aj) if s € SNy

T(s,a,s’) = {

R(" R(s,a,s’) if s € Sp
s,a,s’) = .
R;i(si, ai,si’) + Rj(Sj, aj,sj’.) if s € SNT
where s € S, s’ € S and a € A. Thus, we may exploit the transition
and reward independence at the non-interaction states.

While our Dec-MDP model characterizes the agents as having
local full-observability, there may be scenarios where each agent
may be uncertain about its own current partial view. In robotics,
!Thus, our Dec-MDP is a locally fully observable model whose local states when

combined yield the fully observable global state, per Goldman and Zilberstein’s cate-
gorization of such decentralized models [12].

this may result from hardware inaccuracies (e.g. sensor noise) or
environmental limitations. If no attribute of the system state is
hidden from the agents and the combination of agents’ observations
results in the global state, we may adopt a jointly fully-observable
Dec-MDP model [3]. Finally, in cases where certain features of the
system are never perfectly revealed to the agents the appropriate
way to model the environment would be as a Dec-POMDP.

3.2 IRL from Team Demonstrations

Let the joint experts’ demonstration be given as:
E _ 0 .0 0 0 1 .1 1 1 T T T T
X" = (<Si,3j>, <ai»aj>» <3i,3j>, <a,~,a]~>, e (S} 5 S) {a; ,a;)).

As we mentioned in Section 2, AIRL makes use of state-action
samples drawn from both the expert (given) and the currently
learned data, which is used by the discriminator to compute a
binary cross entropy (BCE) loss at each iteration. Let the expert’s
demonstrations be XE (as shown above) and trajectories drawn
from the currently learned decentralized policy 7 be denoted as
X. Samples are drawn from XF and X at every iteration and used
to minimize the distance between the expert’s and learned state-
action marginal distributions. The reward is updated using the
discriminator’s confusion [11] and the updated reward is sent to
the generator. The latter uses a decentralized generalization of
PPO [29], which we call Dec-PPO, which follows the same CTDE
architecture as MA-PPO [39].

Dec-PPO generalizes PPO from Section 2.2. The centralized critic
network updates the value function as a squared-error loss:

LY (@) = (7 (1) = 7 7)2)]

where V,mrg is the discounted reward-to-go obtained during the
corresponding episode at timestep t and V7 (S?) is the predicted
value of global state s’ (Section 3.1). Let,

(allet

r ﬂw,i(aﬂsf) o ﬂm,](aj|sj)
i~ olds 11 fv T T olds 1 tn
2l (al|sh) I CATH)

Then the policy loss of the decentralized actor networks for the
agents i and j respectively is given as:

LELP (w) = Ey min (A; A4, clip(A;,1 — €,1+ €)A™H) |

,a5)~ T i [
L]CLIP(w) = E(st atyr,, [min (Aj A", clip(Aj,1 - €,1+€)AT/)] .
% w,

The policy entropy loss is added to the clipped surrogate objec-
tive to promote exploration. This is given as:

L{ENT((A)) =oH [ﬂw,i(sf)] and LfNT(co) =oH [n’w,j(s;-)]
where H is the policy entropy and o is the entropy hyperparameter.
The total loss for the two actors is then given as:

Li(w) = LiCLIP(w) + LiENT((/J)
Lj(w) = ISP (0) + LENT (w)

At the end of training, the discriminator returns the learned com-
mon reward function while the generator provides the converged
vector of policies.

Algorithm 1: Dec-AIRL

Input: DM sans R and T; Exp trajs XE.
Output: Learned common reward function R
1 Initialize decentralized policy sr, Discriminator Dg.

2 for iter < 0 to train_iters do

3 Generate joint trajectories X using st

4 Sample joint (s, a) pairs Y, YE from X, XE, respectively.
5 for ep « 0 to discriminator_epochs do

6 Train discriminator Dg via BCE to classify expert

data Y from learned policy data Y.

7 Update reward

R —logDg(S,A,S") —log(1 —Dg(S,A,S’))
8 for ep < 0 to generator_epochs do

9 ‘ Train generator G(R) « Dec-PPO.

10 Get updated policy L «— G(R).

11 return ﬁ nL

3.3 Algorithm

The algorithm for Dec-AIRL (Algorithm 1) takes the model DM
without the reward function and transition function (as Dec-AlIRL is
model free), the expert trajectories XE as input. The aim is to learn
the common reward function for the task R. It starts by generating
a random decentralized policy vector 7 (line 1), and a discriminator
Dg with random weights is initialized. The algorithm begins its
iterative updates until the end of training iterations (line 2). In each
iteration, joint trajectories X of the agents are generated using the
current policy vector 7z, followed by picking some state-action pairs
Y from X and some state-action pairs Y from XF (line 4). Using
these samples, the discriminator is trained to differentiate between
the expert and learned sample data using BCE loss (line 6). From
the trained discriminator, the updated reward R is then extracted in
line 7. Next, the generator G(R) is trained with a centralized critic
and decentralized actors based Dec-PPO to generate the forward
rollout vector of policies. Finally, the learned reward function R
and converged policy ! are returned by the algorithm.

3.4 Human-Robot Collaborative Task Execution

Notice that in Algorithm 1 Dec-AIRL yields the learned reward
function as well as the learned policy vector, zL. From this vector,
the policy of the agent being replaced by the robot is then used to
control the robot in the collaboration. The environment state at
each time step is perfectly observed through the robot’s sensors
and the corresponding action from the decentralized robot policy
is performed by the robot. This execution continues until the task
is completed or a goal state is reached. To illustrate, in a simulated
assistive domain, the robot’s policy would map the state obtained
from the simulation to the target robot’s joint torques. Whereas
for the real-world produce sorting domain, discrete state values
consisting of the onion location, blemished or not, and the location
of the human’s gloved hand is mapped to a high-level action, which
is then performed by the robot. Section 4 explains the specifics in
more detail.

4 EXPERIMENTS

We implemented Algorithm 1 in Python by extending an existing
AIRL implementation [36]. Our codebase is freely available on
GitHub at https://github.com/prasuchit/Dec-AIRL. We evaluate
Dec-AIRL using two domains, one of which is a simulation while
the other uses human agents and a physical collaborative robot.

4.1 Simulated Patient Assistance

Our formative evaluation domain is available within the simulated
open-source assistive-gym [6], which consists of multiple environ-
ments that involve a cobot assisting a patient with basic needs such
as bathing, scratching, feeding, and dressing. These environments
are built on top of OpenAI’s gym testbed [5], and available in an
MMDP format in version 0.1 and a Dec-MDP format in the latest
version. For the purpose of this paper, we chose an environment
that allows both the human and robot to act at every time step, and
consists of both necessary and adverse interactions.

Setup. A Sawyer robotic arm (7 DOF cobot from Hahn Robotics
previously Rethink Robotics) must safely and successfully feed a
human, while the human also moves towards the spoon to receive it,
as shown in Fig. 2. Each agent - robot and human - follow a learned
policy to successfully complete the task because the start state of
both agents is not fixed and they do not follow predetermined paths
to reach their respective goals. Therefore, an agent’s action at every
time step may be contingent on the other agent’s action.

The task leads to several interactions between the agents: a
necessary interaction is where the robot brings the spoonful of food
in contact with the human’s mouth and the human moves towards
the robot to cooperate. On the other hand, the robot touching the
human anywhere other than the mouth, either with the spoon or
its arm, is considered an adverse interaction. The resulting penalty
is proportional to the force of contact. Figure 2c shows an example
of an adverse interaction where the robot touches the human near
the eye with the spoon while following a poorly learned policy.

The robot and human state is composed of the following values
respective to the agent: spoon: pose and orientation, human head: pose
and orientation, spoon distance from human mouth, body joint angles,
and the spoon force on the human. The dimension of actions for the
human and robot are 4 and 7 respectively based on the number of
mobile joints. The state S in the Dec-MDP is a concatenation of the
human’s and robot’s states.

Performance evaluation. For Dec-AIRL, we used 256 hidden
nodes for the 2 hidden layers in both the g and h networks within
the discriminator, a batchsize of 128, learning rate for both the dis-
criminator and the actors as 0.0003, discount factor and generalized
advantage estimator (1) both as 0.95, max gradient normalization
as 0.5, and a random seed between 1 and 100. For Dec-PPO, we used
the same hyperparameters as mentioned in gSDE [25] because it
has been tuned and tested on multiple pybullet environments. The
default hyperparameters were used for Co-GAIL and MA-AIRL.
The expert trajectories were obtained from a trained RL model.
We compared the performance of Dec-AIRL with two known base-
lines, MA-AIRL and Co-GAIL. All three algorithms were provided
107 steps of expert data X with each episode lasting a maximum
of 200 time steps though usually less, and trained for 107 iterations.

https://github.com/prasuchit/Dec-AIRL

(@) (b) ©

Figure 2: (a) Sawyer picking up the food from the table.
(b) Feeding it to the human in the chair while the human
also moves towards the spoon to cooperate. (c) The cobot
encountering an adverse interaction by touching the hu-
man near the eye.

[Method [# steps | # adverse interactions [Total reward l

Expert 245 4 148.6
MA-AIRL 131.2 12 108
Co-GAIL 164.5 19 91.4
Dec-AIRL 35 7 143.2

Table 1: Dec-AIRL improves on both baseline methods signif-
icantly and is closest to the expert’s performance.

The forward RL step in MA-AIRL and Co-GAIL requires to be run
on perfectly observed global state-action pairs, while the Dec-PPO
in Dec-AIRL was run such that data that was observable to each
agent only was provided to it. All three learned policies were de-
ployed in a setting where the human state was perturbed using a
small offset of 0.1 to depict a realistic perception through sensors
like RGB-D cameras.

Table 1 compares the methods on the number of steps to complete
the feeding, number of adverse interactions, and reward accrued
per episode, averaged across 100 episodes. The results show that Co-
GAIL and MA-AIRL converge to a joint policy that performs poorly
in interacting states as compared to Dec-AIRL and this difference is
statistically significant (Wilcoxon rank-sum test on reward accrued
and number of adverse interactions, all p-values < 0.0005). Both
MA-AIRL and Co-GAIL yield policies that prescribe actions condi-
tioned on the global state. In other words, due to the choice of the
underlying model (MMDP or Markov game), the robot is assumed
to have access to the human’s joint angles and by extension the
accurate pose and orientation of the human head; it must also assess
the force experienced by the human due to the spoon. However,
these may not be observed perfectly in practice by the robot leading
to suboptimal actions. As Dec-AIRL yields a decentralized policy
for the robot, which depends only on the parameters that it can
observe, its performance is better aligned with the situation. There-
fore, not only does Dec-AIRL generate less adverse interactions, it
also accrues a better reward per episode compared to the baselines.
Figure 3 shows the comparison between the Dec-AIRL policy and
the baseline policies when the robot is close to the human’s mouth.

(a) (b) ()

Figure 3: Comparison of the three learned policies imple-
mented on an environment where the human’s pose is not
perfectly observed. (a) Co-GAIL policy and (b) MA-AIRL
policy reach close to the mouth but fail to accurately feed
the human and also drop some food, while (c) Dec-AIRL
policy takes a slightly longer path to the mouth than the
expert but manages to feed the human correctly while
avoiding adverse interactions.

(@) (b)

Figure 4: Demonstration setup: Snapshots of a human-human
(expert) demonstration where the two agents stand on oppo-
site sides of a conveyor and sort faux onions. Observe that
the camera placed behind expert 1 observes expert 2’s state
and actions, and vice versa. (a) Both agents inspecting their
respective onions during the sort. (b) Expert 2 does a No-Op
action (pauses) to avoid conflict in a shared workspace while
placing on conveyor.

Notice how with the baseline policies, the cobot reaches close but is
not able to reach the mouth accurately. Meanwhile, with Dec-AIRL
policy, the cobot is able to feed the human correctly, spills less food
in the process, and avoids adverse interactions.

4.2 Human-Robot Line Sorting

Our summative evaluation domain is a use-inspired human-robot
line sorting task where the physical cobot UR3e (from Universal
Robots) is tasked with sorting onions along with a human on a
conveyor belt after observing a human-human team perform the
task. A key challenge to a successful sort in the shared workspace
is for both agents to avoid reaching for an onion on the table simul-
taneously or placing a good onion back on the table in tandem after
inspection — we refer to these situations as adverse interactions.
We model the collaborative onion-sorting domain as a discrete
Dec-MDP sans the reward function, which is learned. The factored
local state for each agent is captured by 4 key variables yielding
a total of 96 local states: Onion_location:funknown, on conveyor,
hover location, in front of face}; EndEffector_location:{on conveyor,
hover location, in front of face, in bin}; Prediction:{unknown, good,
bad} and Interaction:{true, false}. The value ‘hover location’ is a

region of space just on top of the conveyor and ‘in bin’ indicates
just inside a bin that holds discarded onions. The interaction vari-
able is activated for states where the other agent also reaches out
simultaneously to pick or place an onion on the table. An example
global state where the robot’s target onion is on the table, its end-
effector is in the hover location, the onion prediction is bad, both
the human’s onion and hand are in front of the face, the prediction
is good, and the agents are not in an interaction state, would be
represented as ((on conveyor, hover location, bad, false),(in front,
in front, good, false)). Prior to detection, each onion’s location and
status is unknown.

Each sorter performs one of six abstract actions in the Dec-MDP:
Detect, which shifts the sorter’s focus to a new onion on the table
and also gives a preliminary prediction, Pick up the onion which
is self explanatory; Inspect the onion by rotating it and checking
for blemishes; Place onion on the conveyor after it is picked and
found to be unblemished; otherwise Place onion in the bin after it
is picked; No-Operation to wait for one timestep in the same state.
Both the agents have the same set of local state variables and local
actions. 2 The Dec-MDP model is implemented as an environment
in MA-Gym [17] for convenient dissemination.

Setup. Two depth cameras alongside each agent observe and record
the other agent (human or robot) standing opposite (see Fig. 4). The
time-synchronized, fused RGB-D frames from these cameras are
quantized into appropriate state variables by SA-Net [31] while a
trained YOLOv5 deep neural network model [27] is used to detect
and classify the onions as blemished or not, which is not perfect.
These state recognitions are shown in red text on the frames in Fig. 5.
For Dec-AIRL, we used the same hyperparameters as mentioned
in Section 4.1 except for the size of hidden nodes in the g and h
networks, which we modified to 128 hidden nodes for the 2 hidden
layers because the Dec-MDP model of agent sorting is smaller and
discrete compared to the assistive domain.

Performance evaluation. We recorded 10 rounds of sorting by 4
different teams of 2 humans each. Each round is a sort of a batch of
10 onions. This yielded 40 trajectories with an average of 650 frames
per trajectory, containing a total of about 25,000 joint state-action
pairs. Dec-AIRL’s performance is again compared with the two
baselines: Co-GAIL [35] and MA-AIRL [40]. To obtain the global
state on which the MMDP policy conditions its actions, the RGB-D
frames from the two cameras are time synchronized through ROS at
each time step. All three methods were run for 10 iterations, which
resulted in near convergence. We compare their performance using
the empirical learned behavior accuracy (LBA), a previously-used
metric [2] that gives the proportion of prescribed actions from the
learned policy for an agent which matches those of the optimal
policy. We extend this metric to both agents. Figure 6 shows the
LBAs for increasing numbers of input state-action pairs, which
yields agent behaviors of varying quality. Observe that, (i) the LBA
of all three methods improves as more training data is available, as
we may expect; and (ii) Dec-AIRL’s inversely learned behavior for
the agents improves significantly on that learned by MA-AIRL and

2Note that our Dec-MDP model does not provide low-level control of the cobot’s
motion, which allows its variables to remain discrete. We follow a pipeline program-
ming architecture in which the Dec-MDP’s abstract actions map to motion planners
in configuration space and plan in real time.

Figure 5: Some of the image frames that compose the joint
state-action trajectories X E via SA-Net [31]. The annotations
on the images are the state-action predictions and the bound-
ing boxes are generated by YOLOV5. The first frame captures
when the onion is on the conveyor and the human expert
is about to pick. The second captures the human inspecting
and finding a good onion. The third is when the human is
placing the onion back on the conveyor.

Figure 6: The empirical LBA comparison between Dec-AIRL,
MA-AIRL and Co-GAIL with varying levels of training data.
25000 states from SA-Net trajectories were used to obtain the
robot action from these policies and compared to the ground
truth robot action.

Co-GAIL for various sets of input trajectories. One reason for this
improvement is that MA-AIRL and Co-GAIL learn policies which
prescribe actions that led to more adverse interactions compared
to the actions from Dec-AIRL. The best policies yielded 153 inter-
actions for Co-GAIL and 96 interactions for MA-AIRL compared
to 27 for Dec-AIRL across 2,304 states of the sort. A key reason
for this is that the human’s blemished onion assessment, which
is available during training as part of the global state, cannot be
observed during execution. It may lead the cobot to pick an onion
thinking that the human will discard its picked onion into the bin.
However, if the noisy assessment has mislabeled the onion being
inspected by the human as blemished, the human actually places it
back on the table leading to a collision (for illustration, see Fig. 7).

(2)

(©

Figure 7: Adverse interaction from a MA-AIRL learned policy. (a) Both the cobot and human are engaged in inspection. (b) The
human decides to place the onion back on the conveyor because he assesses it as a good onion. Meanwhile, the cobot is also
placing its onion back because it wrongly estimated the global state as it cannot see the onion from the human’s perspective.
This particular onion had a blemish not visible while on the conveyor, which led the cobot to (erroneously) reason that the
human will discard the onion. (c) Both agents place their onion on the conveyor thereby encountering an adverse interaction.

Table 2: Average precision and recall from 5 cobot-human
sorting sessions with 10 onions sorted per session using poli-
cies learned via MA-AIRL and Dec-AIRL. The cobot-human
team’s performance with Dec-AIRL policy improves on MA-
AIRL performance in terms of recall. TP - True positive, FP -
False positive, TN - True negative, FN - False negative.

[Method [(TP.FP,IN,FN) [Precision | Recall |

Human-human (4,1,5,0) 0.8 1.0
Human-cobot (MA-AIRL) (3,2,3,2) 0.6 0.6
Human-cobot (Dec-AIRL) (3,2,4,1) 0.6 0.75

As MA-AIRL exhibits a higher LBA compared to Co-GAIL, we
selected MA-AIRL as the baseline for comparison with Dec-AIRL
on the physical sorting. We deployed the best performing decen-
tralized policy of one of the agents to control a physical cobot UR3e
to guide collaboration with a human to sort faux onions. We ran 5
rounds of cobot-human sorting where lab members (not involved
in this paper) played the role of the human sorter. Our evaluation
focuses on how well the cobot sorts in the team and whether it
avoids adverse interactions; the human sorters follow a fixed be-
havior in sorting the onions (see the supplementary file for more
details). The cobot performs the sort by receiving the bounding
boxes from YOLO v5, on which techniques such as central orthogo-
nal projection, direct linear, and affine transforms are used to obtain
the coordinates of the onions in its 3D workspace. The cobot and
the human each pick up the onions and place them either in the
bin or back on the conveyor table after inspection. We measure
the team’s sorting performance using the domain-specific metrics
of precision and recall where precision = TP/(TP + FP) and recall
= TP/(TP + FN). Here, true positive (TP) is the count of blemished
onions in the bin, false positive (FP) is the number of good onions
in bin, true negative (TN) is the number of good onions remaining
on table, and false negative (FN) is the count of blemished onions
remaining on table. From Table 2, we note that Dec-AIRL leads to
the cobot-human team exhibiting recall that is better than that of
MA-AIRL but still somewhat far out from the precision and recall
of the human-human team, which indicates room for improvement.

Figure 8 shows some frames from the cobot-human collaborative
sort when the cobot is using the Dec-AIRL-learned policy.

5 RELATED WORK

Recently, few IRL techniques have targeted the problem of multi-
agent coordination/cooperation. They model the problem either as
a game-theoretic equilibrium, solve an MMDP with the assumption
that all agents have access to the global state, or just consider the
other agent(s) as part of the transition noise in the environment [23].

Multi-agent imitation learning. Imitation learning techniques
that deal with multi-agent tasks include MAGAIL [32], CoDAIL [21],
MA-DAAC [16], and Bayesian MA-DAAC [38]. These techniques
extend GAIL to a multi-agent setup. MAGAIL and CoDAIL model
the problem as a Markov game with Nash equilibrium as the conver-
gence criteria. MA-DAAC aims to improve the scalability of multi-
agent GAIL by representing the generator with an actor-attention-
critic instead of the regular actor-critic and using a centralized or
decentralized discriminator. All of these methods evaluate their
approach on multi-agent particle environments (a simulated plat-
form by OpenAl containing small multi-agent domains that do not
involve adverse interactions) in both cooperative and competitive
setups. Recently, Co-GAIL [35] extended InfoGAIL [19] to model
human-robot interaction scenarios with multiple human strategies.
They model it as an MMDP, where all agents have access to the
global state, and assume that the latent feature, the human strategy,
is shared between agents. Co-GAIL is implemented on iGibson’s
simulated human-robot domains and the expert trajectories are
recorded using Amazon turk. BTIL [30] uses a task model and agent
model and infers the time-varying mental states of team members.
It learns decentralized team policies from demonstrations of sub-
optimal teamwork. It also jointly learns their transition models.
BTIL was evaluated on a single movers-and-packers domain, which
is a relatively small and simulated platform. Although, the paper
claims to learn a decentralized policy, their policy is a mapping of
the global task state to agent action, which is not a fully decentral-
ized representation. None of these techniques utilize a decentralized
MDP as the underlying model of the task, which is better suited for
modeling problems where an agent cannot perceive the global state.

(@ (b)

(0) (d)

Figure 8: Frames from collaborative sort with the cobot using a Dec-AIRL learned policy. (a) The cobot recognizes that the
human is about to pick and does No-Op to avoid an adverse interaction. (b) The cobot pauses to choose an onion (detect), while
the human places her onion in the bad onion bin. (c) The human pauses to choose an onion (detect) on the conveyor, while the
robot picks the next onion. (d) The human picks the chosen onion while the robot places its onion in the bad bin.

They also do not evaluate the method on domains that require a
human to actively interact with a robot.

Multi-agent inverse RL. In the IRL context, MA-AIRL [40], ME-
AIRL [37], and MA-AIRL-Latent [13] extend AIRL to a multi-agent
setup. MA-AIRL models the problem under logistic stochastic best
response equilibrium (also known as the quantal response) and tests
the method on multi-agent particle environments. MA-AIRL-Latent
aims to improve the sample efficiency of MA-AIRL when the agents
have shared latent variables, and evaluates on highway trajectories
from the highD data set [18] and trajectories of aircraft in terminal
airspace from non-public Federal Aviation Administration (FAA)
data (also simulated domains). ME-AIRL uses an analytical method
to connect the actor-critic model with AIRL and GAIL and measures
the performance of the method on a simple single-state continu-
ous game for 2 agents with one action dimension per agent. Older
techniques such as Joint-Action-IRL [23] and BA-IRL [33] consider
the other agent to be part of the environment as transition noise
and model the IRL problem as a single-agent scenario. Joint-Action-
IRL implements the method on a hand-finishing task where the
human’s role is to refinish the surface of a box attached to an ABB
industrial robot and the robot moves to aid the process. BA-IRL eval-
uates their method on a ROS/Gazebo simulation of two Turtlebots
trying to sort balls on a table using attached manipulators. An early
technique GSSG-IRL [26] models decentralized, non-cooperative
multiple agents using IRL, but formulates the problem as a Nash
equilibrium based general-sum stochastic game between the agents
and tests the technique on a simple Gridworld domain only. The
key difference between GSSG-IRL and Dec-AlRL is that in our case,
the agents are cooperative and maximize a common system reward
instead of working in self-interest. Additionally, we test our method
on both a simulated continuous domain and a use-inspired dis-
crete domain with human-robot collaboration scenarios that model
adverse interactions.

6 CONCLUDING REMARKS

Motivated by the paradigm of learn-from-observation to learn
human-robot collaborations, we presented a novel multi-agent IRL
method that learns from human-human demonstrations to allow a
cobot to work collaboratively with a human while avoiding adverse
interactions within a shared workspace. We highlighted the impor-
tance of using a decentralized MDP to model the learning problem
as compared to the previous game-theoretic approaches or using

a multi-agent MDP model. Results show that the Dec-AIRL out-
performs the previous multi-agent MDP based imitation learning
method and a Markov game based IRL technique. Dec-AIRL also per-
forms satisfactorily when compared with a human-human sorting
team. We have also shown generalizability of our technique across
two domains, one being continuous and simulated and the other
being discrete and realistic. Thus, Dec-AIRL could pave the way for
facilitating future cobot deployments in human-robot collaborative
scenarios involving shared workspaces.

An avenue for future work is to learn type-contingent reward
functions where the human teammate may be of varying types
engaging in differing ways of completing the task based on her
type. A type-contingent reward function will let the cobot adapt its
behavior to the different types of teammates. Another possible ex-
tension of this work would be to model the human (demonstrators
and/or co-worker(s)) as bounded rational instead of fully rational.
This could be done by solving the model attributed to them approxi-
mately (to their level of reasoning) or by maintaining a model of the
human that also factors into the policy training. Additionally, Dec-
AIRL models a simultaneous action multi-agent scenario though
the human and cobot complete some of their actions at different
rates. As such, the Dec-AIRL may need to be generalized to reason
with time-varying actions.

In certain cases, the expert (human) demonstrations may not
be perfectly observable, or environmental obstacles may cause
occlusions. Existing IRL methods use expectation-maximization
or marginalization to deal with these problems. Alternatively, we
could use human-in-the-loop techniques to receive clarifications
or more demonstrations for the uncertain portions. Finally, there
may be cases where the human teammate may exhibit divergent
behavior than what was observed in the expert demonstrations. In
such cases, one approach is to start with the policy learned using
the IRL reward function as a starting point and perform online RL
to accommodate these new changes progressively.

Some additional domains where Dec-AIRL could be applied in-
clude collaborative assembly tasks (e.g. furniture assembly), inde-
pendent tasks within a shared workspace like an automation line,
and emergency search-and-rescue scenarios. As such, Dec-AIRL can
be extended and utilized in many other avenues to solve a variety
of problems in human-robot collaboration in shared workspaces.

ACKNOWLEDGMENTS

This research is supported in part by NSF grant #IIS-1830421 and
a Phase 1 grant from the GA Research Alliance. We thank the
demonstrators and other experimenters for their assistance.

REFERENCES

(1]

[2

—

[7

[

(8]

[11]

[12

[13]

[14]

(15

[16]

[17]

(18]

Rushdi Alsaleh and Tarek Sayed. 2021. Markov-game modeling of cyclist-
pedestrian interactions in shared spaces: A multi-agent adversarial inverse rein-
forcement learning approach. Transportation research part C: emerging technolo-
gies 128 (2021), 103191.

Saurabh Arora and Prashant Doshi. 2021. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial Intelligence 297 (2021),
103500.

Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.
The Complexity of Decentralized Control of Markov Decision Processes. Math.
Oper. Res. 27, 4 (Nov. 2002), 819-840.

Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision
processes. In TARK, Vol. 96. Citeseer, Unknown, None, 195-210.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym.
arXiv:arXiv:1606.01540

Zackory Erickson, Vamsee Gangaram, Ariel Kapusta, C. Karen Liu, and Charles C.
Kemp. 2020. Assistive Gym: A Physics Simulation Framework for Assistive
Robotics. IEEE International Conference on Robotics and Automation (ICRA) 1,
None (2020), 0-0.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016. Guided Cost Learning: Deep
Inverse Optimal Control via Policy Optimization. arXiv preprint arXiv:1603.00448
(2016), 0.

Justin Fu, Katie Luo, and Sergey Levine. 2018. Learning Robust Rewards with
Adverserial Inverse Reinforcement Learning. In International Conference on Learn-
ing Representations. unknown, None, 1-10. https://openreview.net/forum?id=
rkHywl- A-

Sinong Geng, Houssam Nassif, Carlos Manzanares, Max Reppen, and Ronnie Sir-
car. 2020. Deep PQR: Solving inverse reinforcement learning using anchor actions.
In International Conference on Machine Learning. PMLR, unknown, unknown,
3431-3441.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. 2020. A di-
vergence minimization perspective on imitation learning methods. In Conference
on Robot Learning. PMLR, unknown, unknown, 1259-1277.

Adam Gleave and Sam Toyer. 2022. A Primer on Maximum Causal Entropy
Inverse Reinforcement Learning. arXiv preprint arXiv:2203.11409 1 (2022), arxiv.

Claudia V. Goldman and Shlomo Zilberstein. 2003. Optimizing Information
Exchange in Cooperative Multi-agent Systems. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems
(Melbourne, Australia) (AAMAS ’03). ACM, New York, NY, USA, 137-144.

Nate Gruver, Jiaming Song, Mykel J Kochenderfer, and Stefano Ermon. 2020.
Multi-agent adversarial inverse reinforcement learning with latent variables.
In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. None, None, 1855-1857.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. 2017. Rein-
forcement learning with deep energy-based policies. In International Conference
on Machine Learning. PMLR, unknown, unknown, 1352-1361.

Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
Advances in neural information processing systems 29 (2016), None.

Wonseok Jeon, Paul Barde, Derek Nowrouzezahrai, and Joelle Pineau. 2020.
Scalable multi-agent inverse reinforcement learning via actor-attention-critic.
arXiv preprint arXiv:2002.10525 None, None (2020), None.

Anurag Koul. 2019. ma-gym: Collection of multi-agent environments based on
OpenAl gym. https://github.com/koulanurag/ma-gym.

Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. 2018. The
highd dataset: A drone dataset of naturalistic vehicle trajectories on german
highways for validation of highly automated driving systems. In 2018 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC). IEEE, None,
None, 2118-2125.

[19

[20

[21

[22

[23

S
=)

[25

[26

[27

[28

[30

[31

[32

®
&

[34

[35

(36]
(37]

[38

@
0,

[40

(41

Xiaomin Lin, Peter A Beling, and Randy Cogill. 2017. Multiagent inverse rein-
forcement learning for two-person zero-sum games. IEEE Transactions on Games
10, 1 (2017), 56-68.

Michael L Littman. 1994. Markov games as a framework for multi-agent re-
inforcement learning. In Proceedings of the eleventh international conference on
machine learning, Vol. 157. None, None, 157-163.

Minghuan Liu, Ming Zhou, Weinan Zhang, Yuzheng Zhuang, Jun Wang, Wulong
Liu, and Yong Yu. 2020. Multi-agent interactions modeling with correlated
policies. arXiv preprint arXiv:2001.03415 None, None (2020), None.

Francisco S Melo and Manuela Veloso. 2011. Decentralized MDPs with sparse
interactions. Artg‘iciallntelligence 175, 11 (2011), 1757-1789.

Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. 2015. Effi-
cient model learning from joint-action demonstrations for human-robot collabo-
rative tasks. In 2015 10th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, None, None, 189-196.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

Antonin Raffin, Jens Kober, and Freek Stulp. 2022. Smooth exploration for robotic
reinforcement learning. In Conference on Robot Learning. PMLR, None, None,
1634-1644.

Tummalapalli Sudhamsh Reddy, Vamsikrishna Gopikrishna, Gergely Zaruba,
and Manfred Huber. 2012. Inverse reinforcement learning for decentralized
non-cooperative multiagent systems. In 2012 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, None, None, 1930-1935.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. None, None, 779-788.
Stuart Russell. 1998. Learning Agents for Uncertain Environments (Extended
Abstract). In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory (Madison, Wisconsin, USA) (COLT’ 98). ACM, New York, NY,
USA, 101-103.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
None, None (2017), None.

Sangwon Seo and Vaibhav V. Unhelkar. 2022. Semi-Supervised Imitation Learning
of Team Policies from Suboptimal Demonstrations. IJCAI abs/2205.02959 (2022),
2492-2500. https://doi.org/10.24963/ijcai.2022/346

Nihal Soans, Ehsan Asali, Yi Hong, and Prashant Doshi. 2020. Sa-net: Robust
state-action recognition for learning from observations. In 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, None, None, 2153-2159.
Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. 2018. Multi-
agent generative adversarial imitation learning. Advances in neural information
processing systems 31 (2018), None.

Maulesh Trivedi and Prashant Doshi. 2018. Inverse learning of robot behavior for
collaborative planning. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, None, None, 1-9.

David Venuto. 2020. Robust Adversarial Inverse Reinforcement Learning with
Temporally Extended Actions. McGill University (Canada), None.

Chen Wang, Claudia Pérez-D’Arpino, Danfei Xu, Li Fei-Fei, Karen Liu, and Sil-
vio Savarese. 2022. Co-GAIL: Learning Diverse Strategies for Human-Robot
Collaboration. In Conference on Robot Learning. PMLR, unknown, unknown,
1279-1290.

Toshk Watanabe. 2020. A PyTorch implementation of GAIL and AIRL based on
PPO. https://github.com/ku2482/gail-airl-ppo.pytorch.

Ermo Wei, Drew Wicke, and Sean Luke. 2019. Multiagent Adversarial Inverse
Reinforcement Learning.. In AAMAS. None, None, 2265-2266.

Fan Yang, Alina Vereshchaka, Changyou Chen, and Wen Dong. 2020. Bayesian
multi-type mean field multi-agent imitation learning. Advances in Neural Infor-
mation Processing Systems 33 (2020), 2469-2478.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.
arXiv preprint arXiv:2103.01955 1, None (2021), None.

Lantao Yu, Jiaming Song, and Stefano Ermon. 2019. Multi-agent adversarial
inverse reinforcement learning. In International Conference on Machine Learning.
PMLR, None, None, 7194-7201.

Brian Ziebart. 2010. Modeling Purposeful Adaptive Behavior with the Principle of
Maximum Causal Entropy. Ph.D. Dissertation. Carnegie Mellon University.

https://arxiv.org/abs/arXiv:1606.01540
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://github.com/koulanurag/ma-gym
https://doi.org/10.24963/ijcai.2022/346
https://github.com/ku2482/gail-airl-ppo.pytorch

	Abstract
	1 Introduction
	2 Background
	2.1 Review of Adversarial IRL
	2.2 Proximal Policy Optimization

	3 Decentralized AIRL for Human-Robot Interaction
	3.1 Interaction Model
	3.2 IRL from Team Demonstrations
	3.3 Algorithm
	3.4 Human-Robot Collaborative Task Execution

	4 Experiments
	4.1 Simulated Patient Assistance
	4.2 Human-Robot Line Sorting

	5 Related Work
	6 Concluding Remarks
	Acknowledgments
	References

