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Abstract—Real-world ontologies tend to be very large with
several containing thousands of entities. Increasingly, ontologies
are hosted in repositories, which often compute the alignment
between the ontologies. As new ontologies are submitted or
ontologies are updated, their alignment with others must be
quickly computed. Therefore, aligning several pairs of ontologies
quickly becomes a challenge for these repositories. We project
this problem as one of batch alignment and show how it may
be approached using the distributed computing paradigm of
MapReduce. Our approach allows any alignment algorithm to
be utilized on a MapReduce architecture. Experiments using
four representative alignment algorithms demonstrate flexible
and significant speedup of batch alignment of large ontology
pairs using MapReduce.

I. INTRODUCTION

We are witnessing a growing number of ontology reposito-

ries hosting several ontologies on specific domains [1], [2].

Simultaneously, ontologies in these repositories are signifi-

cantly large (more than 1,000 concepts). Because many of

these ontologies overlap in their scope, aligning ontologies is

important to the success and usefulness of the repositories [3].

Although ontology alignment is traditionally perceived as an

offline and one-time task, issues of scaling to large ontologies

and performing the alignment in a reasonable amount of time

without much qualitative compromise are gaining importance.

As new ontologies are submitted or ontologies are updated,

their alignment with others must be quickly computed. As

existing algorithms find it difficult to scale up for very large

ontologies, aligning several pairs of ontologies quickly be-

comes a challenge for these repositories.

A prevalent way of managing the alignment complexity

posed by large ontologies is to simply dissect the ontologies

into smaller pieces and align some of the ontology parts [4],

[5]. Parallelizing the alignment process is another way of ap-

proaching scalability. Intra-matcher parallelization introduces

parallelization within the alignment algorithm. On the other

hand, inter-matcher parallelization aligns several ontology

parts in parallel using ontology alignment algorithms [6].

In the context of a general absence of inter-matcher paral-

lelization, our primary contribution in this paper is a novel

and general method for batch alignment of large ontology

pairs using the distributed computing paradigm of MapRe-

duce [7]. As distributed computing clusters including cloud

computing proliferate, the significance of this approach is

that it allows us to exploit these parallel computing resources

toward automatically aligning several ontologies whose scale

takes them out of the reach of many of the current algorithms,

and simultaneously align in a reasonable amount of time. In

contrast to simply dividing the batch of ontology pairs into

mutually exclusive subsets and aligning each set on different

nodes, we partition each ontology to obtain similar-sized

subontology pairs and align them in a distributed manner. This

provides improved and flexible speedup compared to the other

approach.

In order to demonstrate the efficiency that MapReduce

brings in general, we utilize Falcon-AO [8], Logmap [9]

Optima+ [5], and YAM++ [10] as representative algorithms

and the open-source Hadoop implementation [11] of MapRe-

duce. Using batches of several ontology pairs spanning mul-

tiple domains, we show: (a) our formulation of distributed

alignment using MapReduce demonstrates more than an order

of magnitude in speedup for aligning multiple ontology pairs;

(b) small changes in the quality of the alignment when using

some of the algorithms while no change for others; (c) batch

alignment of large ontologies using scalable algorithms such

as Logmap may be further speeded up through distributed

computing despite the overhead.

II. DISTRIBUTED ONTOLOGY ALIGNMENT USING

MAPREDUCE PARADIGM

MapReduce [7] is a popular programming framework for

processing large data sets in parallel using a distributed

computing environment. MapReduce involves two steps: Map

and Reduce. The map function maps the input data to an

intermediate data-set which is processed by a reduce function.

The reduce function reads the output of map, processes it

and generates the final output. MapReduce defines a master

node and several worker nodes. The master node manages the

distribution of tasks and data to worker nodes. A worker node

is a mapper if it performs the map step or is labeled as a

reducer if it is assigned a reduce task.

Input to the MapReduce framework is a list of data records,

where each record has a unique key and a value. The master

node splits the input and assigns each part to a mapper. The

mapper reads each record in the given part and generates

intermediate key-value pairs. The master node then processes

the intermediate output from mappers and assigns a set of
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Fig. 1. The MapReduce framework for ontology alignment. The input is a
list of key-value pairs, which is split. A mapper reads a record and writes
intermediate key-value pairs to the different nodes’ local file systems. A
reducer reads the allocated intermediate output and aligns the subontologies.
Finally, output alignments between the subontology pairs are merged.

keys and for each key the list of all associated values to a

reducer. For each key, reducer processes the set of values

and writes out the output in key-value pair format. Distributed

implementations of MapReduce such as Hadoop [11] provide

functionalities such as a simple partitioning of the input data,

managing node failures, and administering communications,

while expecting users to program the map and reduce steps.

Approaches adopting this functional model may be naturally

parallelized and executed on a large cluster of commodity

machines. In this distributed setup, several mappers and reduc-

ers could be independently working in parallel. MapReduce

provides a simple programming framework for tasks to scale

up to large data while keeping the overhead of distributed

computation transparent. Below we provide our approach for

batch alignment using MapReduce. 1

A. Identifying Alignment Subproblems

We formulate alignment subproblems by partitioning each

pair of ontologies, O1 and O2 from the batch, and align-

ing pairs of parts. Let O1 and O2 be partitioned into

k1 subontologies, {O1

1
,O2

1
, . . . ,Ok1

1
}, and k2 subontologies,

{O1

2
,O2

2
, . . . ,Ok2

2
}, respectively. Among the few existing

partitioning approaches, Falcon-AO generates structurally co-

hesive subontologies using clustering [4]. Hamdi et al. [12]

noted that in this approach each ontology is decomposed

independently of the other without considering the alignment

objective. This limitation is mitigated by first identifying

anchors, which are entities in the two ontologies that have

identical names or labels, followed by forming subontologies

around these anchors based on the structural neighborhood. In

this paper, we utilize this technique to cluster the concepts.

To possibly avoid loosing relationships between entities in

different clusters, we duplicate one of the participating entities

in the other cluster and add the relationship. Note that this step

may lead to overlapping subontologies, and therefore the parts

do not technically form a partition. Given the subontologies,

we formulate alignment subproblems, (Oi
1

, Oj
2
) such that parts

i and j have a correspondence between their anchors.

1We provide an implementation of our algorithm based on the alignment
API provided by OAEI at http://tinyurl.com/mxsyq4f for reuse.

B. Aligning Ontologies Using MapReduce

An alignment subproblem, Sij , is defined as, Sij =
〈Kij , (O

i
1
,Oj

2
)〉 where, Kij is the unique key for the subprob-

lem, and Oi
1

and Oj
2

are the subontologies that have a corre-

spondance between their anchors, as discussed in the previous

subsection. As shown in Fig. 1, the input to MapReduce is a

set of key-value pairs such that the key uniquely identifies a

subproblem and the value is a pair of subontologies associated

with that subproblem. This list is split by the master node and

the parts are sent to the mapper nodes. The map function reads

in a data record, say Sij , and writes out two intermediate

key-value pairs, one for each subontology –
〈

Kij ,O
i
1

〉

and
〈

Kij ,O
j
2

〉

. An instance of the reducer node will get these

new key-value pairs, and possibly more with other keys. The

reduce function aligns the subontologies associated with the

same key, and writes out the output as another key-value

pair where the key remains the same, Kij , and the value is

the alignment between the corresponding blocks. Alignments

for all subontology pairs from all reducers are transferred to

the master node where they are merged. The overhead of

distributed execution is usually transparent.

C. Merging Subproblem Alignments

Alignment algorithms may process the correspondences.

The goal of this postprocessing is to remove inconsistent

and duplicate correspondences. Despite this post process-

ing, we may need to postprocess them further to remove

specific inconsistencies. In addition to removing duplicate

correspondences, we identify two inconsistencies, which must

be resolved:

Xa

Xb

Y

Yβ 

==

correspondence

(a) Crisscross correspondence

XG Y

YH

=

⊆

rdfs:subClassOf

(b) Redundant correspondence

Fig. 2. Two types of inconsistent correspondences, which must be resolved
while merging subproblem alignments.

1) Crisscross mappings, as illustrated in Fig. 2(a). While

merging alignments from two subproblems, let there

exist correspondence, 〈xa, yβ ,=, caβ〉, in one alignment

and, 〈xb, yα,=, cbα〉, in the other, where xa and xb

are entities in ontology, O1, yα and yβ are entities in

ontology, O2, and caβ and cbα are confidence scores

in the equivalence correspondences. If xb is a subclass

of xa and yβ is a subclass of yα then these crisscross

correspondences are inconsistent. We remove the one

with the lower confidence score while merging.

2) Redundant mappings are illustrated in Fig. 2(b). In

order to keep the alignment minimal, we remove those

correspondences which may be inferred from another.

Let there exist correspondence, 〈xa, yα,⊆, caα〉, in one

subproblem alignment and, 〈xa, yβ ,=, caβ〉, in the other

alignment. Here, xa is an entity of ontology, O1, and
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Fig. 3. Average execution times of Falcon-AO , Logmap, Optima+, and YAM++ in their original form on a single node and using MapReduce, for aligning
the (a) conference track ontologies, (b) large OAEI ontologies and (c) biomedical ontologies from NCBO. Note, YAM++ has difficulties in aligning some
ontology pairs in conference track and biomedical track4. Note that the time axes are in log scale.

TABLE I
THE PRECISION (P), RECALL (R) AND F-MEASURE (F) OF THE OUTPUT ALIGNMENTS BY FALCON-AO, LOGMAP, OPTIMA+, AND YAM++ IN

MAPREDUCE SETUP FOR THE LARGE ONTOLOGY PAIRS FROM OAEI. THE DEFAULT PERFORMANCE OF LOGMAP AND YAM++ ARE ALSO PRESENTED IN

THE TABLE FOR COMPARISON4 . FALCON-AO AND OPTIMA+ PRODUCES SAME OUTPUT IN BOTH THE SETUP.

Ontology MapReduce/Default MapReduce MapReduce/Default MapReduce Default Default

Pairs
Falcon-AO Logmap Optima+ YAM++ Logmap YAM++

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

(mouse,human) 73 74 73 96 75 84 78 73 76 95 77 85 92 85 88 94 86 90

(STW,TheSoz) 57 50 53 57 51 54 18 40 25 55 52 53 69 64 67 60 75 66

(fma,nci) 95 81 88 95 83 89 96 83 89 97 84 90 95 86 90 98 85 91

(fma,snomed) 85 63 72 85 63 72 84 61 71 86 63 73 97 66 78 97 70 81

(snomed,nci) 69 58 63 67 58 62 70 58 63 71 58 64 90 64 75 95 60 74

yα and yβ are entities of ontology, O2. If yβ is a

subclass of yα, then we may remove the correspondence,

〈xa, yα,⊆, caα〉, which can be inferred.

Though these inconsistencies are similar to those previously

discussed [13], and can be resolved using the same techniques,

they are not obtained in a similar manner. Importantly, we do

not seek inconsistencies within an alignment of a subproblem,

but address the inconsistencies between alignments of two

different subproblems while merging them. We may enrich this

postprocessing further using the techniques detailed in [13].

III. PERFORMANCE EVALUATION

We study the impact of distributing ontology alignment us-

ing MapReduce in terms of average speedup of the alignment

time and its impact on the quality of the alignment. For this

study, we utilize the four representative alignment algorithms:

Falcon-AO, Logmap, Optima+, and YAM++. Specifically,

we compare the total execution time when using MapReduce

with the time required by the default setup of each alignment

algorithm for aligning batches of ontology pairs. In order to

evaluate the scalability of our formulation we measure the

speedup obtained as we allocate an increasing number of nodes

to Hadoop for each algorithms. We use a Hadoop cluster

of 12 CentOS 6.3 systems, each with 24 2.0GHz Intel Xeon

processors and memory limited to a maximum of 2GB per

task in each node. All timing results are averages of 3 runs;

we observed very small variances in the execution times.

We use three comprehensive batches of several ontology

pairs spanning multiple domains. The first batch, labeled

conference testbed consists of 120 medium-sized ontology

pairs from the conference track of OAEI 2012, all of which

structure knowledge related to conference organization. OAEI

provides reference alignments for only 21 pairs in this track.

The second batch includes large ontology pairs from anatomy,

library and large biomedical ontologies tracks of OAEI 2012

along with their reference alignments. We call this batch as,

large OAEI testbed. Finally, we utilized a recently created

batch of 50 large ontology pairs using ontologies from the

NCBO, available at http://tinyurl.com/n4t2ns3.

In Fig. 3, we show the average execution time consumed

by Falcon-AO, Logmap, Optima+, and YAM++ in batch

aligning ontology pairs from the three testbeds mentioned

previously, in their default form on a single node and with

MapReduce in the Hadoop framework 2. We observe an order

of magnitude reduction in average execution time brought

about by MapReduce for all four algorithms in aligning large

ontology pairs from OAEI. Importantly, while Logmap is

designed to be the scalable, distributed alignment of a set of

pairs using Logmap demonstrates significant speedup.

We tabulate the precision (P), recall (R) and F-measure (F)

of the output alignments by all four algorithms in MapReduce

setup for the large ontology pairs from OAEI in Table I.

Because, both Falcon-AO and Optima+ by default employ

partitioning, the performance metrics do not change between

their default setup and MapReduce. We observed a significant

reduction in F-measure when aligning subontology pairs in

2YAM++ in conference batch aligned only 21 ontology pairs and fails
for rest of the pairs (similar difficulties were observed in OAEI 2012 [14]).
Because its source-code is not available we could not investigate its failure.
Also, it is not able align our large biomedical testbed without partitioning.
Subsequently, we compare the performance of default YAM++ aligning
ontology parts of the biomedical testbed with its MapReduce setup.



MapReduce using both Logmap and YAM++. A maximum of

13% reduction in F-measure is observed on using Logmap, for

the (snomed,nci) ontology pair and on using YAM++ for the

(STW,TheSoz) ontology pair. We believe that with improved

partitioning techniques we may reduce this impact.

As an aside, partitioning is not mandatory for our approach.

For example, we also observe a significant speedup in aligning

the medium-sized conference ontology pairs in MapReduce

without partitioning. Batch alignment of conference testbed

using MapReduce and Falcon-AO, Logmap, Optima+, and

YAM++ obtained 59%, 63%, 61% and 71% F-measure. Since

we do not partition these medium-sized ontologies there is

no change in output using MapReduce. For our biomedical

testbed Falcon-AO generated a recall of 49% while with

Optima+ a recall of 58% is obtained. Logmap and YAM++

produced 51% and 56% recall respectively.

To analyze the maximum speedup the MapReduce approach

could offer for batch aligningnment and the minimum number

of nodes required to achieve it, we gradually increased the

number of nodes allocated and measured the average execution

time of alignment. The average execution time to align,

(a) large OAEI testbed and (b) biomedical testbed using

MapReduce with increasing number of nodes is shown in

Fig. 4. The execution time decreases exponentially with an

increasing number of nodes until it reaches a minimum. We

observed that the minimum number of nodes required to reach

the minimum execution time varies between using different

algorithms and data-sets. This is because, execution times

required for aligning subproblems vary between algorithms.

IV. CONCLUSION

This paper showed how automated ontology alignment

may be performed in a distributed manner using the popular

distributed computing model, MapReduce, thereby allowing

ontology alignment to exploit the proliferating cloud comput-

ing paradigm. MapReduce demonstrated significant speedup

when aligning three different batches of ontology pairs using

four representative alignment algorithms. This included recent

efficient algorithms such as Logmap, whose alignment time

for performing batch alignment reduced when deployed in

MapReduce compared to its default execution on a single

node. This paper represents an important step toward making

alignment techniques computationally more scalable.

As additional analysis, we note that MapReduce also de-

creases the execution time of aligning a single ontology pair

when used with any of the representative algorithms other

than Logmap. For example, alignment using MapReduce with

Falcon-AO gained speedup by a factor of 3.8 while with

Optima+, it offered a speedup factor of 58, for aligning

the very large ontology pair, (mouse,human), from OAEIs

anatomy track. MapReduce with YAM++ achieved a speedup

of 22 for the same ontology pair. However, Logmap designed

to be scalable from the ground up when used in MapReduce

consumed 22 seconds more. Here, we note that YAM++

provides the best F-measure on this and many other ontology

pairs, so its improved scalability is of import.

 1

 1.5

 2

 2.5

T
im

e
 (

m
in

)

Falcon-AO  

 1

 2

 3

 4

T
im

e
 (

m
in

)

LogMap

 2

 4
 6

 8
 10
 12
 14

 16

 10  30  50  70  90  110

T
im

e
 (

m
in

)

Number of Nodes

Optima+
Yam++

(a) Large OAEI Ontologies

 40

 55

 70

T
im

e
 (

s
e

c
)

Falcon-AO  
LogMap

 60

 90

 120

 150

T
im

e
 (

s
e

c
)

Yam++

 120

 160

 200

 240

 280

 10  30  50  70  90  110

T
im

e
 (

s
e

c
)

Number of Nodes

Optima+

(b) Biomedical Ontologies

Fig. 4. The plot depicts the exponential decaying of average total execution
time with increasing number of nodes by Falcon-AO, Logmap, Optima+, and
YAM++ for (a) large ontologies from OAEI and (b) biomedical ontologies.
Note, the average execution time gradually converges to a minimum time.
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