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Abstract 
Humans are experts in cooperation. To effectively engage with others they have to apply Theory of Mind 
(ToM), that is they have to model others beliefs, desires, and intentions and predict their behavior from these 
mental states. Here, we investigate ToM processes during real-time reciprocal coordination between two 
players engaging in a cooperative decision game. The game consists of a noisy and unstable environment. To 
succeed participants have to model the state of the world and their partner’s belief about it and integrate both 
pieces of information into a coherent decision. Thereby the game combines social and non-social learning into 
a single decision problem. To quantify the learning processes underlying participants’ actions, we modeled 
the behavior with Interactive Partially Observable Markov Decisions Processes (I-POMDP). The I-POMDP 
framework extends single agent action planning under uncertainty to the multi-agent domain by including 
intentional models of other agents. Using this framework we successfully predicted interactive behavior. 
Furthermore, we extracted participants’ beliefs about the environment and their beliefs about the mental 
states of their partners, giving us direct access to the cognitive operations underling cooperative behavior. By 
relating players’ own beliefs with their partners’ model of themselves we show that dyads whose beliefs are 
more aligned coordinate more successfully. This provides strong evidence that behavioral coordination relies 
on mental alignment.    
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Extended Abstract 

Cooperation is the capacity to act in accordance with the perceptions, goals, and beliefs of others to facilitate 
the own and other’s gain equitably. Humans are distinctly skilled at this capacity. Examples encompass a 
teacher passing on knowledge to a student, or engineers working together to develop self-driving cars or new 
means of producing renewable energy. Cognitively, cooperation without prior coordination often requires 
Theory of Mind (ToM), i.e. the capacity to estimate and represent others’ mental states and predict rational 
behavior based on these mental states. To successfully cooperate, humans have to combine the predictions of 
their partners’ behavior with their knowledge of the world and act according to the combined requirements 
of the interactive situation. Here we set out to investigate the cognitive processes allowing humans to 
cooperate in a formalized and quantifiable way. We aim at capturing the models that humans build of others’ 
mental states and the world and how they integrate these pieces of information to produce coordinated 
actions.  
To examine the processes underlying cooperative behavior in a truly interactive setting we developed a novel 
decision-making task that requires participants to make cooperative choices on probabilistic and occasionally 
changing options. The reward structure of the task facilitates cooperation by incentivizing identical joint 
actions by both partners. This is complicated by the facts that participants receive only noisy observations of 
the underlying reward structure and that the players’ reward contingencies can reverse unpredictably. 
Additionally, one player has more knowledge about the reward contingencies than the other player. The 
asymmetry of knowledge between two agents resembles the situation in the classic false-belief-task (Wimmer 
& Perner, 1983), in which the (all-knowing) participant has to realize that the girl in the story has a false belief 
about the environment and therefore makes an incorrect choice. In our setup, the less informed player has a 
false belief and the informed player a correct belief about the world. This divergent knowledge prompts 
participants to observe and learn about the reward contingencies, but also to model and track the partner’s 
belief about the world (as well as their partner’s belief about themselves) because the reward is maximal, 
when both players coordinate their actions. Therefore, they need to bring their world knowledge and their 
model of the partner’s mental state together into a single valuation process.  
To gain access to the private cognitive operations that allow humans to coordinate in a complex setting, we 
model the behavioral data in the context of the I-POMDP framework (Gmytrasiewicz & Doshi, 2005). I-
PODMPs extend single-agent action planning in an uncertain environment to the interactive domain by 
including intentional models of other agents that themselves engage in action planning. These models of 
others may themselves include models of the original agent allowing the capture of recursive reasoning 
processes humans can engage in during strategic interaction.  

Task Details 

The task used here extends the 
concept of the classic false belief task 
to the interactive domain. We 
therefore refer to it as the “Interactive 
False Belief Task” (IFBT). In the IFBT 
two players choose between two 
options ("left" or "right") for 
probabilistic rewards. One option has 
a high probability for a high reward 
(10), the other a high probability for a 
low reward (5). Using trial and error 
the participants have to figure 
whether the high reward is on the left or on the right. When both partners obtain the same individual 
outcome, they are rewarded by a ten-fold increase of their individual outcomes. If individual outcomes differ, 
they receive the nominal individual outcomes. Their own reward distribution and the partner’s action are 
unknown to the players, but have to be inferred form the received outcome. The partner’s reward distribution 
is openly presented to the players at the beginning of each trial. Prior to their own choice, participants have 
to predict the partner’s action. In the displayed reward matrices, the initial setting is shown on the left. Both 
players need to choose option “A” to receive the individual high outcome. Thereby, the probability of 
receiving the maximum reward of 100/100 is highest. However, due to the probabilistic choice-outcome 



relation, all other outcomes are also possible. After a few trials, one player’s (here: Player y’s) reward 
contingencies are reversed, i.e. this player's high option moves from left to right or vice versa, while the 
partner's reward contingencies remain the same. This player remains uninformed about the change and is 
therefore referred to as the “Learner”. As Learners are ignorant to reversals, they hold a false belief about the 
reward structure of the task. The partner is informed about the contingency reversal, hence we call this player 
“Teacher”. For the rest of this abstract, for ease of reference we will refer to the Teacher as “she” and the 
Learner as “he”. This is unrelated to the participants' gender, as we tested an equal number of male and female 
participants and all participants played both roles (total N = 50, 25 female). Taking the Learner’s false belief 
into account the Teacher has to choose the less valuable option “B” at the reversal. The most likely ensuing 
reward of 50/50 signals the Learner that his reward contingencies have reversed. After a period of stable 
coordination, reversals repeat. Throughout the game reversals are unpredictable and players are randomly 
assorted to the roles of Teacher and Learner. Thereby, participants have to stay attentive at all times.  

Model-free analysis 

The Learner’s main task in the IFBT is to detect 
and react to changes in the reward-
contingencies. The Teacher is fully informed 
about the change. Her goal is to 
“communicate” these reversals through her 
choices. She has to react to the Learner’s 
decisions at the reversal and to his choice 
adaptation after the reversal. 
Players’ predictions about the partner’s choices 
are shown in the (A), players’ own choices in 
(B). The respective response times (RTs) are 
shown in (B) and (C). Model free analyses 
show, that the Learner detects reversals and 
gradually shifts his choices after a reversal. 
During the reversal, the Teacher correctly 
predict that the Learner stays with his previous 
choice but switches her own choice to “B”. 
Even though the Teacher's prediction is 
identical to his pre-reversal prediction, her RTs 
are 6-fold increased (purple RTs curve in (C)) at reversal. In post reversal trials, the Teacher accurately predicts 
the partner’s choice curve (purple prediction curve in (A) and green choice curve in (B)) and matches the 
Learner’s choice switching by returning to her pre-reversal choice at the same rate (purple choice curve in 
(B)). During this period, the Teacher's prediction RTs 
remain elevated. These results strongly suggest, that 
participants actively engage in mentalizing to solve 
the task. Further, the response times show that 
mentalizing is a computationally demanding 
cognitive process.  
The beneficial effect of mentalizing is shown in a 
strong correlation between players’ accuracy in 
predicting their partner’s choice and their average 
obtained return. This entails that successful 
mentalizing facilitates cooperative behavior.  

Computational Modeling with the I-POMDP 

In the IFBT outcomes are probabilistically associated with the participants’ choice options. The goal of the 
task is to maximize the joint outcome, which by design of the payoff matrix is identical to maximizing the 
individual reward. To achieve this goal the participants have to generate beliefs about which option is 
currently the best. Using their actions and the observations of the resulting joint outcome they can update this 
belief distribution. After a reversal, the Learner does not know that his state has changed. His belief is 



therefore false. The Teacher is aware of the state change. Further, she is informed that the Learner does not 
know about the reversal. Thereby, she can infer the Learner’s false belief, correctly predict the Learner’s 
(wrong) action, and accommodate for it by switching her own choice.  Previous studies examining ToM in 
interactive tasks did not include state uncertainty (Devaine, Hollard, & Daunizeau, 2014; Hill et al., 2017; 
Yoshida, Dolan, & Friston, 2008). In these studies, representing another persons’ beliefs is unnecessary, as in 
a fully and perfectly observable world, others’ beliefs about the states should be identical to one’s own belief. 
In this study, however, participants interacted in a highly uncertain environment. Therefore, we need to 
address the attribution of beliefs to others, a core component of ToM.  
Single agent action planning under uncertainty is 
well captured by partially observable Markov 
Decision Processes (POMDPs) (Kaelbling, Littman, & 
Cassandra, 1998). The innovative element of 
POMDPs is that the agent maintains a belief about 
which states he could be in. Beliefs are represented 
by probability distributions over all possible states. 
At each time step the agent’s belief is updated with a 
Bayesian learning rule. In the context of the IFBT, 
states are specified by the location of the high reward 
option (possible states are “High Left (HL)” and 
“High Right (HR)”). Here, we extend the problem to the multi-agent domain. To capture humans mentalizing 
during interaction in an uncertain environment, we apply Interactive POMDPs (I-POMDPs) (Gmytrasiewicz 
& Doshi, 2005), graphically illustrated on the right. In contrast to single agent POMDPs, I-POMDPs contain 
an agent’s belief about the states of the world and a belief about the mental states of the other agent, which is 
the other agent's belief about the states of the world. For the IFBT this means that agents form a belief about 
the location of their own and their partner's high option, and about the partner's belief about the distribution 
of rewards. As in the single agent model, beliefs are updated at each time step. In the multi-agent framework, 
the belief about the other’s mental state is updated by simulating the partner’s learning process. These core 
features of the framework make it an ideal candidate for modeling participants’ behavior in the IFBT and 
access the underlying critical belief computations.  
We fitted parametrized I-POMDP models to behavioral 
data from the IFBT and found that I-POMDPs predict the 
Teacher’s and the Learner’s actions with high accuracy. 
The Teacher’s and Learner’s beliefs about the Learner’s 
reward contingencies (HL/HR) as computed by fitted I-
POMDPs are shown on the right. The Teacher’s own 
belief about the Learner's reward contingencies is 
represented by the solid purple line.  The Teacher is fully 
informed and therefore knows, that the Learner’s reward 
contingencies are reversed at trial 0. This is reflected in 
the sudden drop in the curve illustrating the Teacher’s 
belief about the Learner’s high option. The Learner’s own 
belief about his rewards is shown in the solid green line 
(partially hidden beneath the dotted purple line). Before 
a reversal, he correctly represents the state of the task. At 
the reversal, his belief becomes false, but he is not aware 
of it yet. The shift in the Learner’s belief only starts in the 
post-reversal period reflecting gradual adaptation to the 
change in reward contingencies. The Teacher’s belief 
about the Learner’s belief is illustrated by the dotted 
purple line. It matches the Learner’s own beliefs almost 
perfectly. This shows that Teachers accurately represent 
their partner’s mental state.  
In a subsequent step we examine the consequences of these beliefs on the coordination of behavior. In the 
IFBT, successful cooperation is achieved by a matching of choices between the two players of a dyad. We find 



that in dyads, in which the Teacher’s representation of the Learner’s 
belief is more similar to the Learner’s own belief (i.e., the belief 
difference is small), choice matching is more pronounced as 
illustrated in the significant negative correlation on the right. These 
results suggest that successful cooperation is enhanced by a 
coordination of mental states.  

Conclusion 

Successful cooperation often requires the coordination of joint 
actions. Here we provide behavioral and computational evidence 
that humans represent their partners as rational intentional agents 
and model their mental states. Using the I-POMDP framework we 
can formalize and quantitatively estimate these Theory of Mind 
processes. Our modeling findings suggests that humans incorporated mental models of their partners into 
their own model of the world and use it to guide coherent decision making leading to successful cooperation 
through mental coordination.  
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