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Abstract 

The mathematical models underlying reinforcement learning help us understand how agents navigate the 
world and maximize future reward. Partially observable Markov Decision Processes (POMDPs) – an 
extension of classic RL – allow for action planning in uncertain environments. In this study we set out to 
investigate human decision-making under these circumstances in the context of cooperation and competition 
using the iconic Tiger Task (TT) in single-player and cooperative and competitive multi-player versions. The 
task mimics the setting of a game show, in which the participant has to choose between two doors hiding 
either a tiger (-100 points) or a treasure (+10 points) or taking a probabilistic hint about the tiger location (-1 
point). In addition to the probabilistic location hints, the multi-player TT also includes probabilistic 
information about the other player's actions. POMDPs have been successfully used in simulations of the 
single-player TT. A critical feature are the beliefs (probability distributions) about current position in the state 
space. However, here we leverage interactive POMDPs (I-POMDPs) for the modeling choice data from the 
cooperative and competitive multi-player TT. I-POMDPs construct a model of the other player’s beliefs, 
which are incorporated into the own valuation process. We demonstrate using hierarchical logistic regression 
modeling that the cooperative context elicits better choices and more accurate predictions of the other player's 
actions.  Furthermore, we show that participants generate Bayesian beliefs to guide their actions. Critically, 
including the social information in the belief updating improves model performance underlining that 
participants use this information in their belief computations. In the next step we will use I-POMDPs that 
explicitly model other players as an intentional agents to investigate the generation of mental models and 
Theory of Mind in cooperative and competitive decision-making in humans. 
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Extended Abstract 

1  Introduction 

Reinforcement learning (RL) has its roots in artificial intelligence, control theory, operation research and has 
proven to be a powerful framework for cognitive neuroscience decision-making under uncertainty. Markov 
decision processes (MDPs) - the mathematical model underlying RL - help robots to pursue the goal of 
maximized total future reward by guiding their decisions when the state space is fully known. The real world, 
however, is imperfect with noisy observations and unexpected environment changes, where the current state 
of the world is often uncertain. The partially observable Markov decision processes (POMDPs) extend MDPs for 
situations of state uncertainty by proposing a belief distribution over possible states and using Bayesian belief 
updating for estimating this belief distribution in each moment (Kaelbling, Littman and Cassandra 1998).  

The iconic Tiger Task played a crucial role in developing this computational framework by providing a 
test bed for simulating decision-making of a single agent in an uncertain world. The task mimics the setting 
of a game-show, in which the agent is presented with two doors, one of which hides a tiger (incurring a large 
loss) and the other one hides a pot of gold (incurring small win). The POMDP framework has been 
subsequently extended for multi-agent settings resulting in interactive partially observable Markov decision 
process (I-POMDP) (Gmytrasiewicz und Doshi 2005), in which two or more agent interact in an uncertain 
world. A crucial element of this framework is that agent build models of the other players and use them to 
predict others’ choices and make better decisions themselves. The Tiger Task was again used in initial 
simulations of agents an their mental contents in this interactive setting. 

Given the crucial role of the Tiger Task in formulating POMDPs and I-POMDPs it is surprising that 
little empirical data exist on this this task. Here, we set out to fill this gap by collecting choice data from human 
participants engaging in the single- and multi-agent Tiger Task, the latter being the focus of this paper. 
Furthermore, following Doshi (Doshi 2005) we devised a cooperative and a competitive version of the multi-
agent Tiger Task and exposed two groups of subjects to them. In a series of model-free and model-based 
analyses of behavioural choice patterns we demonstrate a cooperative context elicits better choices and 
accurate predictions of the other player’s actions and that subjects generate Bayesian beliefs to guide their 
actions. Critically, including the social information from the other player in the belief updating improves 
model performance, which underlines that participants pay attention to the other player and use it in 
formulating beliefs about the state of the world. 
 
2  Task and hypothesis 
 
The goal of the Tiger Task is to maximize the reward by opening the door hiding the gold (+10 point) and to 
avoid opening the door with the tiger (-100 points). In each step there are 3 actions available to the participant: 
open left door (OL), open right door (OR), or listen (L), which results in a probabilistic hint about the location 
of the tiger (growl left (GL), or growl right (GR)), but also costs 1 point. Thus, participant can accumulate 
evidence about the tiger location through repeated L actions. After each open action the position of the tiger 
is reset randomly to one of the two doors (tiger left (TL) or tiger right (TR)).  

In the multi-player version the participants receive an additional probabilistic hint about the actions of 
the other player: creak left, or creak right (indicating that the other player might have opened one of the 
doors), or silence (S) indicating that the other player probably listened. Creaks suggest that the location of the 
tiger might have reset and that currently accumulated beliefs about the tiger location are void. Opening the 
door reveals the correct location of the tiger and the participant get the associated reward with additional 
knowledge of the tiger reset. In our implementation of the Tiger Task participant were also asked to predict 
the other player’s actions at each step before choosing their own action (see Figure 1A for task sequence). 

The competitive and cooperative versions differ in the structure of the payoff matrix: while the 
cooperative version incentivizes concurrent open actions by both players (see Figure 1C bold marking), the 
competitive version provides the maximum reward, if the correct door hiding the gold is opened, while the 
other player opens the wrong door hiding the tiger (see Figure 1B bold marking). Comparing the two versions, 



we expected that participants will take more hints to come to a consensus in cooperative context to avoid 
confusing the other player and generate a more predictable behavior. We also expected more identical actions 
and more accurate predictions of the other player’s actions during cooperation. 
 
3  Results 
 
We invited 58 participants (30 cooperate, 28 compete) to play the multi-player version of the game. In the 
model-free analysis we observed that the participants in the cooperative context took more hints than in the 
competitive context. In addition, prediction accuracy was higher during cooperation. These outcomes were 
both in line with our expectations. Participants in the competitive version exhibited fewer identical actions 
when compared to cooperation (Figure 2A-C).  

Participants in the Tiger Task form beliefs about the states of the game (TL or TR) based on the 
probabilistic hints (GL or GR) and – in the multi-agent Tiger Task – the information from the other player (CR 
or CL). Because there are 3 distinct actions (OL, OR, L) available, we decided to model the action a(t) at each 

step t as an ordered logistic regression model: a(t) = ß0 + ß1 * b(t), where b(t) is the belief about the location of 

the tiger.  
The Tiger Task has only 2 states (TL and TR), which implies a unidimensional belief distribution with 

both states at the end of the range of possible beliefs. This belief distribution is updated on every step with 
the observations following the current action. We compared two version of belief updating: a simple “beta-
belief” model, which uses the mode of a beta distribution as the point estimate of the belief and is updated by 
adjusting the parameters of the beta distribution with the observations (the probabilistic hints following L 
actions). The second model is a Bayesian belief updating model with take the previous belief as the prior and 
calculates the likelihood based on the observation and transition function. We also tested two versions of the 
Bayesian updating model (Eq 1) without and Eq 2) with the inclusion of the social information (also see Figure 
3A-B as an example): 

 

b(t) =
𝑝(𝑔𝑐)∗𝑏(𝑡−1)

𝑝(𝑔𝑐)∗𝑏(𝑡−1)+(1−𝑝(𝑔𝑐))∗(1−𝑏(𝑡−1)))
   (1) 

 
Where, p(gc) is the probability of the hint being correct and b(t-1) is the previous belief about the tiger 

location. 
 

b(t) =
𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)+(1−𝑝(𝑐𝑐))∗(1−𝑝(𝑜𝑜))
∗ 𝑝(𝑟𝑒𝑠𝑒𝑡) +  1 −

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)

𝑝(𝑐𝑐)∗𝑝(𝑜𝑜)+(1−𝑝(𝑐𝑐))∗(1−𝑝(𝑜𝑜))
∗ 𝑏(𝑡 − 1) (2) 

 
Where, p(cc) is the probability of the hint about the partners' action being correct and p(oo) is the 

probability of the partner opening the door, while reset is the probability of the tiger being placed after a door 
is opened (0.5 for a random placement). 

 
Models were estimated using the Stan software package that implements and hierarchical Bayesian 

workflow. Formal model comparison using LOOIC (Leave-one-out information criterion) revealed that the 
Bayesian belief update model resulted in a better fit than the beta-belief model (LOOIC (Bayesian belief) = 
5107.75, LOOIC (Beta belief) = 8530.70). In control analysis, we expanded the set of predictors in the ordered-
logistic model with additional task variables like the number of hints taken, previous outcome and an 
interaction between them (Model 2-5), but found the simpler model with just the belief as a predictor (Model 
1) outperforms these more comprehensive predictor sets (Figure 4A-B). Furthermore, we compared the 
Bayesian belief update without the social information (Eq 1) to the update with the social information added 
(Eq 2) and concluded that the social information adds a significant improvement in the model prediction (see 
the scales of LOOIC values in Figure 4A and 4B). 
 
4  Outlook 
 



We used an ordered logistic discrete choice model with Bayesian belief updating and demonstrated that 
including the social information is providing a much better model fit to the data. This suggests that 
participants in the multi-agent Tiger Task do incorporate the information from the other player into their 
valuation process. However, our Bayesian belief model falls short of an important feature that is likely 
shaping strategic social decisions: it treats the information from the other players as just another piece of 
information from the environment and not as an intentional agent that processes the information in a similar 
way.  
I-POMDPs are a computational framework that explicitly computes the beliefs of the other player as an 
intentional agent as part of the model of the first player. Thus, it is an ideal framework for modeling Theory 
of Mind of another player in a quantitative way (his goals, intentions, and beliefs). Following our Bayesian 
belief model, we will also model the Tiger Task within the I-POMDP framework and compare belief 
computations of the other player in the competitive and cooperative version of the task. 
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6  Figures 

 
 Figure 1:  (A) An example of 
sequence for the multi-player 
version of the task. The player 
predicts the action of the other player 
(indicated by the blue fixation dot) 
followed by the players own action 
choice (indicted by the yellow 
fixation dot). This is followed by the 
probabilistic evidence about the 
other player's action (CL/CR). The 
next screen is either the probabilistic 
hint about the tiger location (GL/GR 
if L was chosen) or the door is 
opened (for OL or OR actions) 
revealing the tiger location. (B) The 
joint payout matrix in the 
competitive context is shown for the 
tiger being on the left side. The bold 
numbers show the best and worst 
choice indicating that the best own 
outcome is achieved if the correct 
door (with the gold) is opened, while 
the other player open the wrong 
door (with the tiger). (C) The joint 
payout matrix in the cooperative 
context is shown when the tiger is on 



the left side. The bold numbers showing the best choice indicating that the maximum payoff is achieved, 
when both players open the correct door at the same time. 

 
Figure 2: (A) In the multi-player 
version of the task the participants 
significantly took more hints in the 
cooperative context when 
compared to the competitive 
context. Participants also had 
significantly higher prediction 
accuracy and identical actions 
(showing coordination) in the 
cooperative context compared to 
the competitive one in (B) and (C) 
respectively. 
 
 

Figure 3: (A) An example 
model behavior of the 
multi-player version of 
the tiger task without the 
social information (see Eq 
1) is shown here. The bold 
red line is the model 
prediction while the blue 
triangles are the actual 
participant action choices 
given their computed 

beliefs. Green dots, which always lie on the red model curve show the model predictions of the data (blue 
triangles). The light-blue area shows the belief region where the ordered logistic model predicts the listen 
action. In the red and green areas the ordered logistic model predicts Open Left and Open Right action 
respectively. The absence of these areas in this model suggests that the model without the social information 
fails to predict the observed open left/right actions. (B) This model behavior shows the prediction made with 
the social information (Eq 2). This model predicts most of the OL actions (red area) and OR actions (green 
area) correctly demonstrating the importance of the social information (CR/CL) for correctly predicting the 
observed data. 

Figure 4: (A) Different 
models compared of the 
multi-player version of the 
task. All the models in (B) 
without the social 
information perform worse 
compared with the LOOIC 
values of the models with 
the social information 
added in (C) (see different 
scales in (B) and (C)). The 
simplest model with just the 
belief update (model 

number 1) in (C) performed better when compared to extensions of number of hints taken, previous outcome 
and an interaction of them. 


