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Abstract

Experiments show that in sequential bargaining games
(SBG), subjects usually deviate from game-theoretic predic-
tions. Previous explanations have focused on considerations
of fairness in the offers, and social utility functions have been
formulated to model the data. However, a recent explanation
by Ho and Su (2013) for observed deviations from game-
theoretic predictions in sequential games is that players en-
gage in limited backward induction. A suite of computa-
tional models that integrate different choice models with util-
ity functions are comprehensively evaluated on SBG data.
These include DeBruyn and Bolton’s recursive quantal re-
sponse with social utility functions, those based on Ho and
Su’s dynamic level-k, and analogous extensions of the cogni-
tive hierarchy with dynamic components. Our comprehensive
analysis reveals that in extended SBG with 5 rounds, models
that capture violations of backward induction perform better
than those that model fairness. However, we did not observe
this result for SBG with less rounds, and fairness of the offer
remains a key consideration in these games.

Introduction

Sequential bargaining games (SBG) (Stahl, 1972; Rubin-
stein, 1982) typically consist of a finite number of rounds of
bargaining over the partition of a pie between a proposer and
a responder. If a partition from the proposer is accepted by
the responder, the game ends and the pie is divided accord-
ing to this partition; otherwise, both players exchange their
roles in the next round and repeat the process until a parti-
tion is accepted or the predefined number of rounds elapse
in which case both players get nothing. Discount factors
are applied to the pie in subsequent rounds for both players
in order to make a disagreement in bargaining costly. The
game-theoretic solution is derived by applying backward in-
duction (Stahl, 1972; Rubinstein, 1982).

Researchers have conducted several experiments on how
humans behave in SBG (Binmore et al., 1985; Neelin et al.,
1988; Ochs and Roth, 1989; Roth et al., 1991) and related
negotiation games (Gal and Pfeffer, 2007). 1 Results from

1The sequential negotiation game studied by Gal and Pfef-
fer (2007) involves a proposer who offers an exchange of colored
chips to a responder who may accept or reject it. If the offer is
rejected, the proposer and responder swap roles. While sharing
important similarities with the SBG, it differs in a key aspect that

these experiments show that subjects primarily do not take
the rational actions prescribed by backward induction. For
example, in one-round bargaining games, also called ultima-
tum games, proposers in the experiments predominantly of-
fer some amount that is less than half the pie but more than
the rational offer to responders, and lower offers were re-
jected frequently (Roth et al., 1991). In two-round SBGs,
most opening offers are between the equal split and sub-
game perfect equilibria (Binmore et al., 1985), though dif-
ferent discount factors for the proposers and responders af-
fect the results slightly (Ochs and Roth, 1989). In the three-
round and five-round extended games, we seldom observe
subgame perfect equilibria amounts in the opening offers,
and a majority of these are close to the second round pie
size (Neelin et al., 1988).

One reason commonly explored to explain human behav-
ioral deviation from rational play is that social factors such
as fairness and reciprocity may affect a human player’s util-
ity (Johnson et al., 2002; Gal and Pfeffer, 2007). Based
on this hypothesis, De Bruyn and Bolton (2008) investigate
the role of fairness by employing two different utility func-
tions and incorporating them into a quantal response equi-
librium framework (McKelvey and Palfrey, 1995) for recur-
sively computing the expected utility at each round. The
quantal response model accounts for noise and experience.
The two compared utility models include one with an equity-
reciprocity competition (Bolton and Ockenfels, 2000) and
the Fehr-Schmidt model (Fehr and Schmidt, 1999) that gen-
eralizes the previous utility model. The reported out-of-
sample fits and model predictions on multiple data sets are
consistent: the two models involving social factors exhibit
better performance than the normative model, though the
difference in performance varies for different data sets. Con-
sequently, fairness is an important factor that needs to be
considered while modeling bargaining.

Another reason that may potentially explain the deviation
from backward induction in SBG is that humans may be
exhibiting limited backward induction (Johnson et al., 2002;
Ho and Su, 2013). Backward induction based solution is
achieved under the assumption that players are rational and
they believe that their opponents are rational who in turn
believe that others are rational. However, this may not be

the utility of the chips does not reduce over the finite rounds.



the case for human players as research suggests that humans
have bounded recursive thinking power (Hedden and Zhang,
2002).

Ho and Su (2013) introduce a model that attributes level-k
rules of varying levels to the other agent with Bayesian up-
date of the distribution over the levels, allowing it to account
for limited backward induction. This dynamic level-k model
was fitted to the experimental data (McKelvey and Palfrey,
1992) on Centipede games (Rosenthal, 1981) giving a better
likelihood compared to the default static level-k and back-
ward induction. In a preliminary outline, Ho and Su pro-
posed its applicability toward SBG as well but did not use it
to fit any data. SBGs differ from Centipede games in having
a much larger number of action choices for the proposer and
role swapping, which complicates the construction of these
models.

We construct a dynamic level-k model for SBG and a
new model that generalizes the Poisson cognitive hierar-
chy (Camerer et al., 2004) with a Bayesian belief update
to account for learning in repeated SBG. In contrast to the
level-k model, a level-k player, k > 0, in the Poisson cog-
nitive hierarchy chooses the action that optimizes its belief,
which assumes a Poisson distribution over all of the lower
levels. While the dynamic level-k model generally follows
Ho and Su’s paradigm, our construction differs in two ways:
an agent at level 0 maximizes its expected utility instead of
acting randomly and we integrate a quantal response func-
tion (McKelvey and Palfrey, 1995) to model decision errors.

Next, we perform a comprehensive and comparative anal-
ysis of the three different models for SBG data in combina-
tion with three different utility models two of which involve
social factors. Given the new ways of thinking about how
humans play sequential games, such an analysis is previ-
ously lacking and is needed crucially for SBG where data
from multiple experiments is available. By combining the
new level-based models with social utility models, we ana-
lyze the fit of two dominant theories on human behavior in
two-player sequential games. For this analysis, we construct
a large data set from 6 different experiments and perform
out-of-sample testing. Interestingly, no one particular model
performs the best on all the data sets. Rather, the level-based
models perform better on data from an extended number of
bargaining rounds while the recursive quantal response with
social utility better models the behavioral data from SBG

with less rounds.
In the following sections, we first talk about background

of sequential bargaining games including data set. We then
briefly talk about three social utility models. After that, we
focus on three choice models which include the quantal re-
sponse model (De Bruyn and Bolton, 2008) and two level-
based models. We also compare the performance of these
three choice models integrated with different utility models
on experiment data set.

Background
SBG are widely studied (Stahl, 1972; Rubinstein, 1982;
Binmore et al., 1985; Neelin et al., 1988; Ochs and Roth,
1989; Roth et al., 1991; Johnson et al., 2002; De Bruyn and
Bolton, 2008) because of their widespread use and economic

impact. We briefly describe SBG followed by an outline of
the experimental data that is available.

Sequential Bargaining Games

In a multi-round SBG, two agents, i and j, bargain over how
to split a pie of c units in n rounds. In odd rounds (initial
round, t = 1), agent i proposes a split and offers x of the
pie to agent j. If agent j accepts this proposal, the game
ends and the pie is divided accordingly with i receiving c−
x and j receiving x. If agent j rejects the offer, the game
continues to round t+1 and the pie shrinks according to the
discount factor, (δi, δj), where δi is a number between 0 and
1 representing agent i’s cost of delay, and analogously for
j. In even rounds, the two agents exchange their roles and
agent j is the proposer. If no agreement is achieved after
n rounds, the game ends and both players get nothing. An
example of a 3-round game used by Neelin et al. (1988),
with the pie size of c = 5, the discount factors, δi = 0.50,
δj = 0.50, is shown in Fig. 1.
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Figure 1: An example 3-round SBG from Neelin et al.
(1988) with a pie size of 5 and discount factors, (0.50, 0.50).
The split, (a,b), denotes that portion a is allocated to agent i
and b is allocated to agent j.

The subgame perfect equilibrium of an n-round SBG is
computed by backward induction. To illustrate, in 1-round
(ultimatum) games, player j prefers some amount than noth-
ing and would accept any offer; player i therefore should
propose the smallest possible offer. In 2-round games, the
proposer in the second round is j who would offer the small-
est possible offer to player i and keep slightly less than cδj .
Therefore, in the first round, in order to make j accept the
offer, proposer i needs to offer slightly larger than what j
would get in round 2. Hence, i should offer cδj to j in the
first round. In this way, we can compute the subgame perfect
equilibrium for games with any number of rounds.

Behavioral Experiments on SBG

Extensive experimentation with human subjects playing
SBG (Binmore et al., 1985; Güth and Tietz, 1986; Neelin
et al., 1988; Ochs and Roth, 1989; Bolton, 1991; Roth et al.,
1991; Güth and van Damme, 1998) has yielded much data
that may inform the computational modeling of behavior in
SBG. Among these experiments, we select data from those
in which the SBGs exhibit more rounds. This allows the



Data Pie Number of Discount Number of Game Mean Game theory
Source set Size Rounds factor subjects repetitions opening prediction

Neelin et al. (1988)
NSS5,1 $5 5 (0.34, 0.34) 80 1 0.343 0.250

NSS5,4 $15 5 (0.34, 0.34) 30 4 0.359 0.250

Ochs and Roth (1989)

OR3,10 $30 3 (0.40, 0.40) 20 10 0.433 0.240

OR3,10 $30 3 (0.60, 0.40) 20 10 0.450 0.160

OR3,10 $30 3 (0.60, 0.60) 18 10 0.451 0.235

OR3,10 $30 3 (0.40, 0.60) 18 10 0.466 0.350

Table 1: Experimental designs and collected data on SBG for our modeling. Values in the column, Game repetitions, indicate
the number of games played by each subject in the pool. Values in the columns, Mean opening and Game theory prediction,
are fractions of the opening pie size.

performance of level-based models such as level-k and Pois-
son cognitive hierarchy to be adequately tested and distin-
guished. Specifically, it facilitates attributing the other agent
different levels and maintaining beliefs over these levels,
which is otherwise precluded by 1- and 2-round games. Sub-
sequently, we select data for SBGs with 3- and 5-rounds.
Furthermore, experiments in which a small pool of subjects
repeatedly play SBGs allow the applicability of the dynamic
aspects of these models. This formed our second criteria for
selecting the data sets.

Having searched a wide range of experiment data sets,
we find six that satisfy our requirements: data from 2 ex-
periments with 5-round games under different conditions
by Neelin et al. (1988) and data from 4 experiments with
3-round games under different conditions by Ochs and
Roth (1989). We summarize the experimental settings, re-
sults and the corresponding equilibrium predictions in Ta-
ble 1. Observe that the averaged opening offers deviate sub-
stantially from equilibrium-based game theory predictions.

Social Utility Models
A well-known reason for behavioral deviations from ratio-
nal play is that subjects may be influenced by social factors,
and a factor especially relevant to SBG is fairness (or equi-
tability). Human decision making in bargaining games and
in negotiation (Gal and Pfeffer, 2007) not only considers the
absolute payoff that is received from an offer but also the
relative utility by comparing the received offer to the oppo-
nent’s.

We consider two prominent utility models that include
fairness considerations. One is the equity-reciprocity com-
petition (ERC) (Bolton and Ockenfels, 2000), which is for-
mally defined for a two-agent setting as:

U(ρ; b) =

{

c
(

ρ− b
2

(

ρ− 1
2

)2
)

if ρ < 1/2,

cρ if ρ ≥ 1/2
(1)

where ρ is the proportion of the pie of size c the agent –
proposer or responder – receives, and b is a fairness factor
measuring the importance of any inequitable allocation. The
utility function defined in ERC when the proportion is less
than half is nonlinear and consists of two components: the
relative utility due to negative reciprocity reduced from the
absolute payoff. Observe that the model is asymmetric be-
cause the utility is increasingly less when the agent is offered

less than half the pie but it is the same as the payoff when
the share is more than half the pie.

The second model is the Fehr-Schmidt model (FSC) (Fehr
and Schmidt, 1999):

U(ρ;α, β) =

{

c
(

ρ− α
(

1
2 − ρ

))

if ρ < 1/2,

c
(

ρ− β
(

ρ− 1
2

))

if ρ ≥ 1/2
(2)

where ρ is as defined for Eq. 1, α and β represent the nega-
tive and positive reciprocity parameters, respectively.

The utility function in FSC is symmetric, a more whole-
some measure of fairness and is a linear variant of the one
used in ERC when a player receives less than half the pie.
When the share is greater than half, relative utility due to
positive reciprocity is reduced as well. 2

For comparison, we also consider the normative utility
model (NORM) in which the utility is simply defined as the
payoff that each player receives.

U(ρ) = cρ (3)

These three social utility models, NORM, FSC, and ERC

are incorporated into different choice models.

Quantal Response based Choice Model

De Bruyn and Bolton (2008) incorporate different social
utility models into a recursive quantal response framework,
denoted as RQR, which provides a distribution over the sub-
ject’s actions. The quantal response choice model assigns
probabilities to actions proportionally to their utilities. The
cumulative probability for the responder accepting an offer
proportion, σt ∈ [0, 1], is the logit function:

P σt

rsp(acc) =
eλ·U(σt)

eλ·U(∅) + eλ·U(σt)
(4)

where U(∅) is the utility of rejecting an offer, it is 0 when t
is the last round, otherwise, it is the expected utility that the
responder can get in the next round, t + 1, as a proposer. λ
is the quantal parameter which controls how rational is the
agent. The probability for the responder rejecting an offer

proportion σt, P σt

rsp(rej) is defined similarly.

Let Pprp(σ
t) be the probability of the proposer making an

offer, σt, at round t. Then,

2Relative utilities due to negative and positive reciprocity may
also be crudely characterized as guilt and envy (Ray et al., 2008).



Pprp(σ
t) =

eλ·E(U(1−σt))

∑

σ′ eλ·E(U(1−σ′))
(5)

where E(U(1 − σt)) is the proposer’s expected util-
ity of offering σ. This takes the responder’s probabil-

ity of acceptance of this offer, P σt

rsp(acc), and rejecting

this offer, P σt

rsp(rej), into consideration, E(U(1 − σt)) =

P σt

rsp(acc)·U(1− σt) +P σt

rsp(rej)·E(U(σt+1)).

Both ERC and FSC were integrated with RQR and com-
pared by De Bruyn and Bolton (2008). The results showed
that RQR+FSC performs relatively better than RQR+ERC.

Dynamic Level based Choice Models

Previous modeling of SBG data has explored the role of
fairness with the conclusion that considering it provides
an improved fit of the data compared to the normative
model (De Bruyn and Bolton, 2008). Recently, Ho and
Su (2013) illustrate that the constraint of limited backward
induction helps explain behavioral data in multi-stage se-
quential games such as Centipede games, and possibly better
compared to considerations of social factors such as positive
and negative reciprocity as in Fehr and Schmidt (1999).

Multi-stage games exhibit the property of limited induc-
tion when a larger deviation from the backward induction
based predictions is observed in extended stage games com-
pared to games with lesser stages. In other words, limited in-
duction causes the deviation to grow as the number of stages
increases.

A dynamic level-k model (Ho and Su, 2013) captures
this systematic violation of backward induction. Johnson
et al. (2002) noted that subjects in a SBG study paid signifi-
cantly less attention to the later rounds and that social factors
do not explain the data, thereby providing preliminary evi-
dence that subjects are engaging in limited induction.

Our first contribution is a construction of the dynamic
level-k and Poisson cognitive hierarchy (Camerer, 2003)
models for the multi-round SBG, in order to investigate
whether limited backward induction capability provides an
improved explanation of the behavioral data. Note that the
latter represents violations of backward induction as well.
We generalize these models to include belief-based learning
for repeated SBG.

Level-k Model With Belief Update

Our dynamic level-k model (DLK) for predicting the actions
of an agent, say i, in an n-round two-agent SBG consists
of iterative decision rules and a belief distribution over these
rules. Rules of levels ranging from 0 up to n − 1 are at-
tributed to the other agent, j, for predicting its possible ac-
tion(s). A level l decision rule, θj,l, where 0 ≤ l ≤ k − 1
and having l steps lookahead, is obtained by applying back-
ward induction to an l-round subgame. An agent at level 0
acts as an utility maximizer believing she is the only agent in
the game. Proposer i at level n initially has a Poisson distri-
bution, parameterized by τ , over the different decision rules

(probabilities are normalized over all possible levels):

bi(θj,l; τ) ∝
τ le−τ

l!
0 ≤ l ≤ k − 1 (6)

where bi(θj,l; τ) represents the probability that i believes j
is a level l player. An example of i’s belief in a 3-round SBG

is given in Figure 2.

level 3 level 1 level 0

level 0

level 2 level 1 level 0

Agent i
Rnd 3 ResponderRnd 2 Responder

Rnd 3 Proposer
Rnd 1 Responder
Rnd 2 Proposer

Rnd 1 Proposer

0.1

0.6

0.3

Agent j Agent i Agent j

Figure 2: Level 3 belief in DLK for a 3-round SBG. Notice that

agent j is a responder in round 1 and a proposer in round 2. A

proposer’s level l rule is a best response to a responder’s level l−1

rule.

A rational responder at level 0 in the final round accepts
an offer, σt, that maximizes her utility function, U(σt). A
responder at any higher level in the final round acts sim-
ilarly. 3 A rational responder at level 0 or a higher level
in an intermediate round computes the optimal proportion
of the pie that she would offer in the next round (as a pro-
poser), σt+1

opt , and accepts an offer whose utility, U(σt), is

greater than the utility of this portion, U(1 − σt+1
opt ). This

optimal portion computed by the responder is also used by
a rational proposer at levels 1 or greater up to k in an in-
termediate round in order to decide her offer. The proposer
offers a portion of the pie, σt, such that the proposer’s share,
1 − σt, maximizes the proposer’s utility and the utility of
the responder’s share, σt, is greater than U(1 − σt+1

opt ), for
the responder. A level 0 proposer keeps the portion of the
pie, 1 − σt, of the current round that maximizes her utility,
U(1− σt).

In DLK, the proposer at level k in the opening round keeps
the portion, 1 − σ1, that both maximizes her utility and the
utility of the responder’s share σ1 is greater than the expec-
tation over the utilities of the responder’s rules at levels 0
to k − 1 in the next round. These utilities would differ be-
cause the optimal proportion is predicated on the level. The
expectation uses the Poisson distribution over the lower lev-
els. Additionally, analogous to RQR, we utilize a quantal
response to model potential errors in the agents’ behaviors.
Given an offer in the current round, σt, a responder may
accept this offer, denoted by acc, or reject it (rej). The util-
ity of accepting the offer becomes U(σt), while the utility
of rejecting it in an intermediate round is the utility of next
round’s optimal portion that the responder would keep (as

the proposer), U(1−σt+1,l
opt ). The responder’s probability of

3Consequently, rules of levels higher than n−1 attributed to the
other agent produce the same behavior as the rule of level n − 1.
Therefore, k need not be greater than n.



accepting an offer in round t, σt, at l ≥ 1 is given as:

P σt,l
rsp (acc;λ) =

eλ·U(σt)

eλ·U(1−σ
t+1,l
opt ) + eλ·U(σt)

(7)

where λ parameterizes the degree to which the agent is play-
ing rationally. The responder’s probability of rejecting the

offer, P σt,l
rsp (rej), is one minus the probability in Eq. 7.

In order to compute the probability of making an offer,
σt, for a proposer at level, 1 ≤ l ≤ k − 1, we first need to
decide whether the offer would be accepted or not. As we
mentioned previously, an offer is accepted if the utility to
the responder of her share, U(σt), is greater than the utility
of the optimal portion that the responder would keep in the
next round, U(1−σt+1

opt ). In this case, the utility of the offer

to the proposer is simply U(1 − σt). On the other hand, if
the offer is rejected, its utility to the proposer is the utility
of the optimal portion that the responder offers in the next
round, U(σt+1

opt ). The probability of proposing an offer is:

Pprp(σ
t) =

eλ·Û(σt)

∑

σ′ eλ·Û(σ′)
(8)

where Û(σt) is a piecewise function: it is U(1 − σt) if the

offer is accepted, or U(σt+1
opt ), otherwise.

At level k, the computation of U(1−σt+1
opt ) is complicated

due to agent i’s Poisson distribution, bi, over the lower level
decision rules. Specifically, the decision rules of different
levels lead to differing optimal portions as computed by the
responder in the next round as the proposer. Consequently:

U(1− σt+1
opt ) =

k−1
∑

l=0

bi(θj,l; τ)U(1− σt+1,l
opt )

Given the above modification, Eq. 8 now applies to a pro-
poser at level k, where U(σt+1

opt ) is computed analogously.

In the DLK model, agent i updates its distribution, bi, be-
tween games on observing the action of the responder to an
offer, σt, when it plays the SBG repeatedly. We may update
this distribution using a simple Bayesian belief update given
the observation of acc or rej,

b′i(θj,l|acc) ∝ P σt,l
rsp (acc)bi(θj,l; τ) (9)

where P σt,l
rsp (acc) is as defined in Eq. 7. Analogously, the

belief update on observing a rejection involves, P σt,l
rsp (rej).

Note that the posterior may not remain a Poisson.
The level-k model described above differs from Ho and

Su’s dynamic model (2013) for SBG in two important ways:
(i) While in our model, the proposer and responder at level 0
acts to maximize its own utility only, Ho and Su let the level
0 proposer and responder select a random threshold, which
serves as the demand and the acceptance threshold. (ii) The
initial belief over the rules of the responder assumes a Pois-
son distribution in our model. On the other hand, Ho and
Su’s construction places a probability 1 on a particular rule
for the responder, which may vary for different participants.

We may integrate the social utility models defined in the
previous section by substituting the normative utility func-
tion NORM with ERC and FSC.

Cognitive Hierarchy Model With Belief Update

Another behavioral model that could systematically capture
violations of backward induction is the cognitive hierarchy
model (Camerer, 2003; Camerer et al., 2004), which while
sharing aspects with the level-k model also differs in key
ways. In the past, this model has predominantly been uti-
lized to model behavioral data on single-shot normal form
games (Camerer, 2003; Wright and Leyton-Brown, 2010).
We extend this model significantly to the context of repeated
SBGs by including a belief update, and denote it as DCH.

While agent i at level k models the other agent, j, with
decision rules at all levels from 0 up to k − 1 where k = n
for an n-round SBG, DCH differs from DLK in that the pro-
poser at any level, l, ascribes decision rules of levels ranging
from 0 to l − 1 to the other. An agent maintains a Pois-
son belief distribution over the rules of all lower levels. We
illustrate the structure of DCH for a 3-round SBG in Fig. 3.

level 1

level 0

level 2

level 3
0.3

level 0level 1

level 0

level 0

Rnd 2 Proposer
Rnd 1 Proposer Rnd 1 Responder

Agent i
Rnd 2 Responder
Rnd 3 Proposer

Rnd 3 Responder
Agent jAgent jAgent i

0.6

0.1
0.8

0.2

Figure 3: An agent at each level ascribes decision rules of all

lower levels to the other, and maintains a belief distribution over

them.

This difference from DLK in the structure of the model
leads to changes in how the responder computes the opti-
mal portion to offer in the next round as the proposer in
that round. A responder at level 1 in any round t computes
σt+1
opt similarly as in DLK since there is only one level be-

low. However, a responder at level 2 computes the optimal
portion that maximizes her expected utility where the ex-
pectation is due to the belief over her opponent in round
t + 1 being at level 1 or 0. We may apply this reasoning
to a responder at any level, 1 < l ≤ k − 1. Formally,
the optimal portion to offer in the next round, t + 1, for
a responder, say j, of level, L ≥ 1, (as the proposer) is,

σt+1,L
opt = argmax

σ

U(1− σ), such that:

U(σ) ≥

L−1
∑

l=0

bj(θi,l; τ)U(σt+1,l
opt ) (10)

where bj(θi,l; τ) is the belief that j has as the proposer in
the next round over the decision rules of the responder in

that round, i, and U(σt+1,l
opt ) is the utility of i’s keep in round

t+ 1 at level l.
Given the above sophistication in computing the optimal

proportion that a responder at any level greater than 1 would
offer in the next round, the probability distributions for the
responder’s and proposer’s actions are computed identically



to Eqs. 7 and 8, respectively. Furthermore, the proposer’s
belief over the decision rules of different levels ascribed to
the responder is also updated similarly to Eq. 9, with one
change from DLK: beliefs of the proposer at all levels from 2
to k are updated. Finally, we may integrate the social utility
models as in DLK.

Performance Analysis

A second contribution of this paper is a comparative analy-
sis of the different potential models on the SBG population
data. We compare the previously prominent choice model –
RQR in combination with the social utility models, NORM,
ERC and FSC – with the new level-based choice models,
DLK and DCH. The normative utility functions in the latter
models may be substituted with those emphasizing fairness
such as ERC and FSC. Because the level-based models are
representative of a different behavioral explanation, we seek
to answer the following important questions:

• Are there types of SBG where the recent hypothesis of
limited backward induction offers a better explanation of
the observed behavior, and, if so, why?

• Is a combination of being fair and limited backward in-
duction influencing behavior in SBG thereby offering an
improved explanation of SBG data in comparison to each
individually?

We note that these are new questions whose answers could
potentially reveal new insights into bargaining behavior.

Our methodology is to utilize one of the data sets in Ta-
ble 1 for learning the parameters of the different models by
minimizing the negative log likelihood of the models. We
refer to the latter as the fit of the model and a greater nega-
tive log likelihood indicates a better fit. This is followed by
an out-of-sample evaluation of the performance of the mod-
els with robustness checks. We evaluate the model perfor-
mances in multiple ways: comparative fit based on the log
likelihood, mean error in the predicted opening offers and
a visual analysis of the distributions of opening offers. We
select the NSS5,4 data set for learning parameters in which
each game is played for 5 rounds and a subject repeats it
though not with the same opponent.

Learned Parameters

The choice model, RQR, is parameterized by the quantal
response parameter, λ, and the update parameter, λ′, that
represents learning across the repeated games. Choice mod-
els, DLK and DCH, are both parameterized by the quantal
response parameter, λ, and the Poisson distribution parame-
ter, τ . Additionally, the social utility models, NORM, ERC

and FSC, use zero, one and two parameters, respectively.

We learn the parameters of the different choice models
in combination with the varying utility models as maximum
likelihood point estimates on the NSS5,4 data set. In Ta-
ble 2, we report their values and the corresponding negative
log likelihoods. For each choice model, we emphasize the
highest log likelihood on using the different utility models,
in bold. The overall best fit is also underlined.

Choice model Parameter Social utility models
NORM ERC FSC

RQR

λ 0.396 0.374 0.329
λ′ -0.005 -0.016 -0.009
b 12.293
α 1.813
β -1.631

log likelihood -309.510 -288.873 -289.041

DLK

λ 0.601 0.931 0.697
τ 0.313 17.070 12.269
b 7.671
α 0.411
β -0.787

log likelihood -263.358 -238.384 -231.027

DCH

λ 0.579 0.943 0.676
τ 0.301 20.256 11.614
b 7.170
α 0.391
β -0.880

log likelihood -263.492 -238.426 -230.713

Table 2: Learned parameters for all combinations of the choice

and utility models, obtained as maximum likelihood point esti-

mates. A space indicates that the parameter is not applicable. High-

est likelihood for each model is indicated in bold.

Observe that the level-based choice models, DLK and
DCH, fit the data set better in comparison to RQR. Inte-
grating the social utility models with the level-based choice
models further improves the fit, with both DLK and DCH ex-
hibiting negative log likelihood that is substantially greater
than that of RQR. This indicates that in the longer 5-round
SBG, considerations of limited backward induction posi-
tively impact the modeling of the data although fairness con-
tinues to play a role in the behavior as well. Notice that the
value of τ increases from approximately 0.3 in the norma-
tive case to greater than 12 on integrating the social utility
models. This indicates that the probability of modeling the
other agent as a level 0 player drops from 0.72 to about 0.
The former is consistent with the observation that opening
offers in the NSS5,4 data being between $5 and $6 about
73% of the times, where $5.1 is the second round’s pie size.
Interestingly, social considerations provide an alternative ex-
planation for this offer – mild levels of fairness – thereby
allowing the weight on level 0 to reduce.

Model Predictions

We perform out-of-sample predictions using the parameters
learned previously as shown in Table 2 on the remaining
data sets of Table 1. These data include observations of sub-
jects playing a 5-round SBG with no repetition and multiple
3-round SBGs with repetition. Out-of-sample testing dif-
fers from n-fold cross validation because the test data sets
may represent distributions that are different from that of
the training set. This could be due to subjects being drawn
from different pools and games with much different param-
eters. Subsequently, such testing provides a robust perfor-
mance evaluation and comparison.

The out-of-sample log likelihoods of the different choice
models in combination with the social utility models are



RQR DLK DCH

Data Set Observations Random NORM ERC FSC NORM ERC FSC NORM ERC FSC

NSS5,1 0.343 0.5±0.013 0.423±0.012 0.404±0.010 0.374±0.011 0.494±0.010 0.435±0.006 0.452±0.008 0.495±0.005 0.435±0.003 0.450±0.003

NSS5,4 0.359 0.5±0.025 0.348±0.012 0.420±0.008 0.392±0.008 0.419±0.006 0.397±0.003 0.387±0.004 0.423±0.010 0.396±0.006 0.386±0.008

OR
3,10

1
0.433 0.5±0.029 0.349±0.012 0.435±0.008 0.433±0.007 0.411±0.006 0.381±0.003 0.332±0.003 0.413±0.006 0.380±0.003 0.312±0.003

OR
3,10

2
0.450 0.5±0.029 0.309±0.012 0.419±0.010 0.404±0.009 0.608±0.006 0.458±0.003 0.495±0.004 0.610±0.007 0.458±0.003 0.485±0.004

OR
3,10

3
0.451 0.5±0.029 0.371±0.013 0.434±0.011 0.424±0.010 0.558±0.006 0.410±0.003 0.322±0.003 0.560±0.006 0.410±0.003 0.311±0.003

OR
3,10
4

0.466 0.5±0.029 0.437±0.013 0.458±0.009 0.459±0.009 0.361±0.006 0.301±0.004 0.192±0.003 0.363±0.006 0.291±0.003 0.192±0.003

Table 4: Mean opening offers (along with standard errors) for the different experiments as observed from the data and obtained from the

model predictions. We include the predictions by a random model as well for comparison.

Choice model Parameter Social utility models
NORM ERC FSC

RQR

NSS5,4 -309.51 -288.87* -289.04*

NSS5,1 -241.85 -231.95* -232.87*

OR13,10 -387.84 -308.05 -302.27

OR23,10 -442.92 -335.43* -338.56*

OR33,10 -346.37 -303.40* -301.43*

OR43,10 -313.80 -273.83 -255.43

DLK

NSS5,4 -263.36 -238.38 -231.03

NSS5,1 -219.49* -211.96* -211.54*

OR13,10 -390.05* -373.94* -583.14

OR23,10 -764.19* -747.11* 613.92

OR33,10 -717.59 -555.90* -618.26*

OR43,10 -750.41 -610.03 -1101.76

DCH

NSS5,4 -263.49 -238.43 -230.71

NSS5,1 -220.24* -212.48* -212.24*

OR13,10 -383.32* -386.05* -667.83

OR23,10 -746.28* -747.79* -587.11

OR33,10 -699.48* -591.50* -711.28

OR43,10 -730.91 -663.35 -1173.17

Table 3: Log likelihoods for the different choice models integrated

with the three utility models. We include the fit on the training data,

NSS5,4, shown previously for completeness. Highest likelihood for

each data set among the models is indicated in bold. * annotates

likelihoods in a row whose difference is not significant.

shown in Table 3. They show distinct trends in the com-
parative performance of the different models: (a) DLK and
DCH provide the best fit for NSS5,1 performing significantly
better than RQR (Student’s paired t-test, p-value = 0.002).
Among the different utility models, ERC and FSC do not
significantly improve on normative for both DLK and DCH

on this data set. However, the two utility models do not
cause a significant difference in the performance of DLK and
DCH for NSS5,1. (b) RQR in combination with either ERC

or FSC provides the best fit for all the OR data sets. Fur-
thermore, the performance of the level-based choice models
degrades significantly for some of the OR data sets.

Based on the learned parameters, we may predict the
mean opening offer by the proposer averaged across all par-
ticipants and games. We report the models predictions in
Table 4. Furthermore, taking the NSS5,1 data set as an ex-
ample, we show in Fig. 4, the distributions of the opening
offer proportions as predicted by the choice and utility mod-
els, in comparison with the observed distribution from the
data.

The observed initial offers from the data in Table 4 are
close to the size of the pie in the next round. From Table 4,
we observe that surprisingly the mean offer proportion pre-
dicted by RQR is closer to the observed offer in comparison
to the level-based choice models though the latter demon-
strated better log likelihoods previously. However, we point
out the higher standard error of RQR’s offer predictions in
comparison to the standard errors of the level-based choice
models for the data set. Indeed, the distributions in Fig. 4
show that the two level-based choice models better simulate
the distribution of opening offers compared to RQR, with
minimal difference between the two. Additionally, the pre-
diction of the opening offer by the random model that picks
an offer at random is close to the observed data for the OR
data sets, but removed from the opening offer for the NSS
data sets. Because the pie size in the next round for the OR
data sets is close to 50% of the first round’s pie size, the
close predictions of the mean random offer are coincidental.
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Figure 4: Distribution of opening offer proportions for test data

set, NSS5, 1, by the different models and from observed data. No-

tice that RQR’s distribution is diffused and compares poorly with

the observed distribution, whose support ranges from 0.1 to 0.6.



Conclusion

Several experiments on SBG have generated a large amount
of behavioral data that is available for modeling. While
previous models have focused on the relevance of fairness
considerations while playing the games, we additionally ex-
plored whether considerations of limited backward induc-
tion could provide an improved model of the data. In this
respect, we utilized two extended models that capture vi-
olations of backward induction for modeling SBG. While
these models have traditionally been applied to single-shot
normal-form games, their application to SBG is new. Our
comprehensive empirical analysis with 9 different models
provides evidence that in longer SBG with more rounds,
limited backward induction plays a crucial role in how hu-
mans engage in SBG. Between the two models that cap-
ture violations of backward induction, we did not observe
a significant difference indicating that the simpler of the
two models, DLK, is sufficient. The modeling is further
improved when combined with social utility indicating that
fairness remains a consideration in the offer. However, for
shorter rounds fairness of the offer remains the key consid-
eration.

As future work, we are interested in exploring the effect
of limited backward induction in other sequential problems.
One such game is sequential negotiation as realized in the
Colored Trail framework.
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