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What isinversereinforcement learning?
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reward function ?
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Definition as stated in the original
paper by Stuart Russell, 1998
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time, in a variety of circumstances; 2) if needed,
measurements of the sensory inputs to that agent; 3) 1
available, a model of the environment
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Remaining parameters of model are assumed to be kn



Presuppositions

The reward function is a succinct, compact
and transferable component of the task
definition

It iIs easler to learn than the policy and the
valuefunction from observations

Often, it is not easily specified especially
when multiple attributes are involved



(Abee| Coates, Quigley & Ng 07)

Learned the reward function containing
24 features using IRL


https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=0JL04JJjocc

How do we learn the reward function
from trajectory data?



Almost all methods model the reward
function as a linear combination of
basis functionsféature functiong
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Problem reduces to learning the weights
from trajectory data



Match feature expectations due to a candidate
policy™ with those from observed data
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Challenge:

Degeneracy Several reward functions
and associated policies may match
observed data



We adopt theprinciple of maximum

entropy (Jaynes 57applied to IRIZiebart&
Maas O8Boulariaset al. 12)

MaxEntrealizes the highestntropy distribution
over policies that satisfy the constraints

Avoids bias toward any particular policy
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Nonlinear program solved usihggrangiamelaxation
L(Pr' ;") and BFGS gradient descent






Multi-robot patrolling
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Learner






wEach 640 x 480 frame is about 1.2 MB
wlLearner observing for 5 mins at 30 frames/sec

wExtract 4 variables: e.g., blob centr0|d _distanc
to blob, position on map ’

wCMVisiorsystem in ROS

wClassify events into state and action
wTime step of 1 sec

Stateactior «30 frames per sec result in 3Q)Y) coordinates sc
pairs use a voting system to resolve any conflict

Learner
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disturbstheir policy
guidedbehaviors



Model each robot as
a MDP and iversely ots Useraaipseerigettions
learn the reward functions Ofrslete@fese only
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Added challenges:
Further degeneracy due to reduced data

Cannot use BFGQfecausegradient is
undefined for unobservablstates

Interactions may occur in occluded
portions of state space

Coordination game has multiple equilibria




W} Why not model multiple robots as a
Il joint MDP (Decentralized MDP) ?

Large, does not scale to many robots

Occlusion introduces partial
observability of states



We use individual MDPs and an
Interaction game

Better suited for sparse interactions
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Statevisitation frequency is now computed from simulations of
et OK NRoO620Qa LI2fAOeée dzyR
+ equilibrium policies during interaction
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when should the learner start moving?






Experiment:

MIRF+INt Occlusiomnd interaction
MIR[ Occlusion but no interaction
Known policy Exact preferences known



Modeling interaction is beneficial
Learning accuracy affects success rate
Success rate improves with observation time

Known Policy mIBL™+Interaclion
mIBL” Random

Success Rate
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Experiment with physical robots
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Partlallyoccluded
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Coordination
betweenrobots
disturbstheir policy
guidedbehaviors

Relax prior knowledge
requirements pertaining
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Focus so far has been on learning reward function
In singleexpert settings

Transition function Is either assumed to be known
or Is assumed to be deterministic that can easily
be determined from data

High levels of occlusion preclude using supervised
learning for determining transition function



Limit our scope to a transition function
that is composed of deterministic core
perturbed by transition error probabilities
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Key Observation

Let transitionprobabilitiesbe a function of underlying

component outcomeprobabilities

E.qg: probability of moving forward successfully is a function of both
wheels rotating at the same speed correctly

The observedrajectory informsassociated component
probabilities




Associate each stataction pair with its
transition featuresp " {t bt W8 ht }
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From the observed trajectory
(iR hihd hihd Bhilm )
we obtain probability of next state given
observed stateaction pairp "
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(Bard 1950)



Experiments

MIRE ++Int  learn T followed bynIRE+Int
MIRE+Int set transition probabilities
DBN:), model T using a DBN and learn

parameters using EM
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What is the benefit of learning the transition
distributions of patrollers?

Can we correctly identify the patroller with the
damaged wheel?

52Sa fSENYAYy3I 0KS LI ONZRCf

e
o
o
)
%)
3
O
|
w

Wy(s,a)
q.

Known R
mIRL" t+Int

0.8 0.85 0.9 0.95
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Experiments with physical robots






f STi 6 Nodamaged wheel

MIRE ; +Int
MIRE + Int
Random




Future work

In trajectory data, actions may not be easily
discernible

E.g., force applied toward lifting objects is hard to
visually ascertain

Can a robot observing another performing a
task join in to form an ad hoc team (DARPA

challenge)?
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